
CSc33200: Operating Systems, CS-CCNY, Fall 2003 Jinzhong Niu September 26, 2003

Nachos Overview

Operating Systems is one of the fundamental courses for a student who majors in computer
software. A good way to obtain a deeper understanding of modern operating system concepts
is to get your hands dirty, to read and analyze the code for operating systems and to see how
it works at a low level, to build significant pieces of operating systems, and to observe their
effects. Our course project, which is based on Nachos, provides you an opportunity to learn
how basic concepts may be used to solve real problems.

1 Introduction

Nachos has an excellent balance between simplicity and realism. On the one hand, Nachos
runs as a UNIX process instead of directly on bare hardware. Thus much tedious code dealing
with real I/O devices is unnecessary keeping Nachos small enough; it is also easier for stu-
dents to do experiments since they don’t need to alter between development environment and
Nachos. On the other hand, Nachos was originally developed for use on DEC MIPS systems
(DEC was acquired by Compaq years ago, which was acquired in turn by HP recently.) and
user programs are in binary format, making Nachos real enough avoiding the sense of ”toy”.
Nachos includes a MIPS simulator to execute MIPS instructions in user programs. Some other
instructional operating systems use their own pseudo instructions, which is interpreted by an
interpreter. With these systems, Students have more sense of working on an application than
on an operating system.

Normally, an operating system runs on the machine that it manages. Nachos is unusual in
that the operating system runs ”side-by-side” with the simulated machine that it controls.
The program nachos implements both the machine simulation and the operating system.
Understanding this ”side-by-side” relationship between the simulated workstation and the
operating system is critical to understanding Nachos.

1.1 The architecture of Nachos

1

Figure 1: How the major pieces in Nachos fit together

1.2 MIPS simulator

The MIPS simulator includes the following components:

• Timer

The timer acts like a periodic alarm clock. Each time the alarm goes off a timer inter-
rupt is generated. Note that the timer runs in simulation time, not in real time. See
interrupt.h for a discussion of how simulation time elapses.

• Disk

The disk stores persistent data. The simulated disk is a very simple one. It has one
recording surface. The surface is divided into tracks, and each track is divided into
sectors. The operating system may issue requests to read or to write disk sectors. (Each
request reads or writes a single sector.) Read and write requests are asynchronous. When
a request is completed, a disk interrupt is generated.

The simulator stores the contents of the simulated disk in a Unix file called DISK.

2

• Console

The console simulates a display and a keyboard. The operating system may issue requests
to put characters to the display, or to read characters from the keyboard. The requests
are asynchronous. When incoming data is available, or when outgoing data has been
sent to the display, interrupts are generated.

By default, the console input is taken from the standard input of the nachos program,
and the console output is sent to standard output. Thus, console output should appear
on your (real) display, and keystrokes on your (real) keyboard are taken as console
input. Console input and output can be redirected to files using nachos command line
arguments.

• Network

The network provides a means of communication among multiple independent simulated
MIPS systems. The operating system can use a simulated network to send and receive
small, fixed-length messages. Message delivery is unreliable - messages may be lost.
Message sending and receiving is asynchronous. When data has been sent or when
data is available to be received, interrupts are generated. The network simulation is
implemented using Unix-domain sockets. See network.h and network.cc for more
information.

• MIPS Instruction Processor

The processor is responsible for simulating the execution of user programs. The processor
has a set of registers and a small (simulated) physical memory for storing user programs
and their data. The contents of the registers and of memory can be read and changed
by the operating system.

When the user program executes a system call instruction, or if a program error (such
as divide-by-zero) occurs, an exception is generated.

• Interrupts

This component simulates the interrupt and exception mechanism. Each of the other
components of the simulated machine may cause interrupts or exceptions to occur. When
one occurs, the hardware transfers control to an interrupt handler (or exception handler),
a function that is part of the operating system. The operating system must provide a
handler for each type of interrupt or exception.

1.3 Solaris/SPARC port

On the Sun SPARC version Nachos, the kernel and machine simulator would run on natively
but the user level environment is still a MIPS in little endian format.

3

Why not port the simulator for running native programs for SPARC? Because it would take
much more work to complete the port and change the CPU simulator to simulate the SPARC
instruction set, which is not a RISC architecture like MIPS. Keeping the MIPS CPU causes a
few problems:

1. You have to generate user-level code for the simulated machine. If you have a hetero-
geneous environment with both SPARC and MIPS workstations, this isn’t so hard –
students only need to compile a few small user programs. But if you only have Sparc-
stations, you need to get gcc to cross-compile to the DEC MIPS.

2. The Nachos kernel runs runs native mode while the user programs runs on the simulated
CPU. This is a little weird on the SparcStation because the user programs are using
little endian and the kernel is using big endian. Some information (such as the argv[]
array) that is passed between the kernel and the user though user memory must be byte
swapped. (Unfortunately, this isn’t as easy to fix as simply cross-compiling to the SGI
MIPS, which is big endian; in a few places, the simulation assumes little endian format.
We’re working on fixing this.)

2 Installation

2.1 Cross compiler

A cross compiler is a compiler which runs on one platform and produces code for another, as op-
posed to a native code compiler which produces code for the platform on which it runs. For our
course project, we need a cross compiler running on Solaris but generating code for MIPS plat-
form. To install and configure a cross compiler may be difficult for someone new to Unix. I have
installed a cross compiler under /home/cslab/public/mips-sparc.solaris-xgcc . You
may simply add this path into your PATHenvironment variable, or download .bashrc from
the course web site and put it in your home directory. If you use shells other than bash (Bourne
Again SHell), you have to figure out yourself.

2.2 Nachos

Once the GNU cross compiler is available, it is time to install Nachos itself. Nachos was origi-
nally developed for use on DEC MIPS systems (DEC was acquired by Compaq years ago, which
was acquired in turn by HP recently.). People later ported it to Solaris/SPARC platform, that
is what we have in UNIX lab, but since every school has different system configuration envi-
ronment, it is not easy to set up Nachos on our machines based on the available Nachos-Solaris
packages all over the Internet. To help avoid the error-prone procedure, I have successfully

4

build a Nachos package, which is both available on the course web site and locally in Solaris
file system. The following procedure shows how to obtain and build the Nachos package:

• Copy the package to ˜/os-proj :

$ cd

$ mkdir os-proj

$ cd /home/cslab/phd/jniu/nachos/archives/ccny/

$ cp nachos-3.4-solaris.tar.gz ˜/os-proj

• Uncompress the package to the current directory:

$ gunzip nachos-3.4-solaris.tar.gz

$ tar xvf nachos-3.4-solaris.tar

• Build Nachos:

$ cd nachos-3.4/code

$ make

3 Nachos directory structure

After you uncompress the Nachos package, a directory named nachos-3.4 appears in the
working directory. Its subdirectory code contains all source code and configuration files for
Nachos. The original Nachos package also contains doc and c++example subdirectories. To
save space, they have been removed from our customized package. In nachos-3.4/code :

• bin

contains the source code for coff2noff , which converts a normal MIPS executable
into a Nachos executable. COFF, or Common Object File Format, is the executable and
object file format used by Unix System V Release 3, and NOFF, short for Nachos Object
File Format, is an object file format exclusively used for Nachos user programs.

• machine

The machine simulation. Except as noted in machine.h , you may not modify the code
in this directory.

5

• threads

Nachos is a multi-threaded system. Thread support is found here. This directory also
contains the main() routine of the nachos program, in main.cc , where you may also
find the information about what parameters you may use to run nachos after you build
it. In fact, this is the best place to start reading the Nachos code, since this is where it
all begins.

• userprog

Nachos operating system code to support the creation of address spaces, loading of user
(test) programs, and execution of test programs on the simulated machine. The exception
handling code is here, in exception.cc .

• filesys

Two different file system implementations are here. The ”real” file system uses the
simulated workstation’s simulated disk to hold files. A ”stub” file system translates
Nachos file system calls into UNIX file system calls. This is useful initially, so that files
can be used (e.g., to hold user programs) before you have had a chance to fix up the
”real” file system. By default, the ”stub” file system is build into the nachos program
and the ”real” file system is not. This can be changed by setting a flag in the Nachos
makefile.

• network

Nachos operating system support for networking.

• test

User test programs to run on the simulated machine. As indicated earlier, these are
separate from the source for the Nachos operating system and simulation. This directory
contains its own Makefile . The test programs are very simple and are written in C
rather than C++.

4 Development and maintainance

4.1 Access to UNIX lab remotely

You may always access our UNIX lab remotely, say from your home, through ssh . ssh is a
program for logging into a remote machine and executing commands in a remote machine. It is
intended to replace rlogin and rsh , and provide secure, encrypted communications between
two untrusted hosts over an insecure network. Thus you may stay at home physically while
working on your Nachos project on our Solaris machines.

6

If you use Linux, normally you already have ssh at hand for use. For Windows, you download
corresponding implementation from http://www.ssh.com/ .

4.2 Sharing files among project group members

You are required to do this project together with your classmates, so naturally you need to
consider how to share files under development among your group members.

There is no single best way to do this. A possible option is to set up a user group in the Solaris
system for your group, and by assigning proper access rights to your project files, you may
allow only your group members to access. Unfortunately, we do not have someone to help me
to do this, and I am not an administrator of the system myself.

If you are familiar with CVS (a code management system that helps program developers
keep track of version history, releases, etc.), you may take advantage of some websites which
provide free services for developing open-source projects, such as www.sourceforge.com ,
and savannah.nongnu.org .

If you are not familiar with CVS, or simply do not want to try it, I am afraid the only option
left is that every member in your group has a private source code directory and somehow
you have to agree upon who is allowed to update which files. However, technically a member
can do whatever he/she wants on his/her directory (:-(This is not really sharing at all).
Whenever necessary, files may be transferred between you and your partners by email or other
mechanisms.

4.3 Archiving

It is a good habit to backup your current development files so that you will not lose much if
you delete your project files by mistake. You may use tar and gzip to generate a compressed
file from your project directory, and name it with appropriate date information. The process
is as follows:

$ cd nachos-3.4/code

$ make clean

$ cd ../..

$ tar cvf mj-nachos-20030922.tar nachos-3.4

$ gzip mj-nachos-20030922.tar

You will see a file named mj-nachos-20030922.tar.gz is generated in the current direc-
tory.

To restore files from an .tar.gz archive, do the following:

7

$ gunzip mj-nachos-20030922.tar.gz

$ tar xvf mj-nachos-20030922.tar

Thus a directory named nachos-3.4 is created containing all the project files.

4.4 UNIX file permissions

Every Unix file has an owner and a group. You can find out the groups of all of the files in a
directory by using the command ls -l in the directory. Each file will be listed, along with
its owner and group, access control, and some other information. For example,

$ pwd

/home/cslab/phd/jniu/mips-sparc.solaris-xgcc

$ ls -l

...

-rwxr-xr-x 1 jniu guest 218592 Sep 5 1999 gcc

...

The 10 characters at the far left describe the access permissions of the file. The first (leftmost)
character is - if the file is a regular file, and d if the file is a directory. The remaining 9
characters are interpreted in groups of three. The first group of three describes the access
permissions of the owner of the file, the next group of three describes the access permissions
for members of the file’s group, and the last group of three describes the access permissions for
everyone else.

There are three characters in each group because there are three types of permissions one
can have for a file: read permission, write permission, and execute permission. You need read
permission to read a file, write permission to change a file, and execute permission to execute
a file (if it is an executable program).

The example above shows that gcc is a directory, owned by jniu who belongs to group
guest . The owner of the file has all three permissions. The members of the file’s group and
everyone else have read and execute permissions but not write permissions.

You can change a file’s permissions using the chmod command. Run man chmod for more
information. Here are some examples:

• chmod g+r file

adds read permission for members of the file’s group (g = group)

• chmod o+w file

adds write permission for everyone else (o = others)

8

• chmod o-r file

removes read permission for everyone else

• chmod u-x file

removes execute permission for the owner(u = user/owner)

You may also need chown and chgrp to change the owner and the group the files belong to.

4.5 make

make is a tool to automate the recompilation, linking etc. of programs, taking account of
the interdependencies of modules and their modification times. It reads instructions from
a ”makefile” which specifies a set of targets to be built, the files they depend on and the
commands to execute in order to produce them.

4.6 gcc/g++ , ld , and as

5 Projects

5.1 Project 0: Refreshing C/C++

This project is not based on Nachos, but helps you to refresh C/C++ knowledge so as to ease
your Nachos development.

Please check the course web page for details.

6 Solaris basics

6.1 File systems

From the point of view of end users, the file system of Solaris is quite different from that of
Windows. In the former, there is only one root directory, that is the root of the directory tree,
while the latter may have multiple root directories, like C:\ , D:\ , etc.. In Solaris, the file
system on a device have to be mount ed onto the only directory tree before it is available for
access.

9

6.2 Redirection

6.3 Editors

6.3.1 vi

6.3.2 emacs

6.4 Commands

6.4.1 man

To know how to use a specific command, whose name is already known, you may always try

% man command

to obtain the usage of command. man is a command that finds and displays the usage pages
associated with specified commands.

6.4.2 showrev

returns system information about the current host.

css4c3% showrev

Hostname: css4c3

Hostid: 83181f11

Release: 5.8

Kernel architecture: sun4u

Application architecture: sparc

Hardware provider: Sun_Microsystems

Domain: cs.ccny

Kernel version: SunOS 5.8 Generic 108528-18 November 2002

Another command that may return similar information is uname.

6.4.3 cp

copy files

6.4.4 cat

concatenate and display files

10

6.4.5 more

Browse or page through a text file

6.4.6 ls

list contents of directories

6.4.7 mv

move files and directories

6.4.8 rm

remove files

6.4.9 mkdir

make directory

6.4.10 rmdir

remove directories

6.4.11 pwd

print working directory

6.4.12 cd

change working directory

6.4.13 chown

change ownership of a file

11

6.4.14 chmod

change the permissions mode of a file

6.4.15 find

6.4.16 grep

6.4.17 tar

6.4.18 df

displays the current usage information on disk device in 512 byte blocks.

12

