
CSc31800: Internet Programming, CS-CCNY, Spring 2004 Jinzhong Niu May 9, 2004

Tomcat Server1

1 Introduction

Tomcat is a Java servlet container and web server from the Jakarta project of the Apache
Software Foundation (http://jakarta.apache.org). A web server is, of course, the program
that dishes out web pages in response to requests from a user sitting at a web browser. But
web servers aren’t limited to serving up static HTML pages; they can also run programs in
response to user requests and return the dynamic results to the user’s browser. This is an
aspect of the web that Apache’s Tomcat is very good at because Tomcat provides both Java
servlet and Java Server Pages (JSP) technologies (in addition to traditional static pages and
external CGI programming). The result is that Tomcat is a good choice for use as a web
server for many applications. And it’s a very good choice if you want a free, open source
(http://opensource.org/) servlet and JSP engine.

Tomcat can be used stand-alone, but it is often used “behind” traditional web servers such as
Apache httpd, with the traditional server serving static pages and Tomcat serving dynamic
servlet and JSP requests.

No matter what we call Tomcat, a Java servlet container or servlet and JSP engine, we mean
Tomcat provides an environment in which servlets can run and JSP can be processed. Similarly,
we can absolutely say a CGI-enabled Web server is a CGI program container or engine since
the server can accommodate CGI programs and communicate with them according to CGI
specification. Between Tomcat and the servlets and JSP code residing on it, there is also a
standard regulating their interaction, servlet and JSP specification, which is in turn a part of
Sun’s J2EE (Java 2 Enterprise Edition).

But what are servlets and JSP? Why do we need them? Let’s take a look at them in the
following subsections before we cover them in much more detail in the future.

1This note contains materials from Tomcat: The Definitive Guide, O’Reilly.

1

http://jakarta.apache.org
http://opensource.org/

2 Web Applications of Servlets and JSP

2.1 Advantages

Traditionally, before Java servlets, when we mention web applications, we mean a collection of
static HTML pages and a few CGI scripts to generate the dynamic content portions of the web
application, which were mostly written in C/C++ or Perl. Those CGI scripts could be written
in a platform-independent way, although they didn’t need to be (and for that reason often
weren’t). Also, since CGI was an accepted industry standard across all web server brands and
implementations, CGI scripts could be written to be web server implementation-independent.
In practice, some are and some aren’t. The biggest problem with CGI was that the design
made it inherently slow and unscalable.

For every HTTP request to a CGI script, the OS must fork and execute a new process, and the
design mandates this. When the web server is under a high traffic load, too many processes
start up and shut down, causing the server machine to dedicate most of its resources to process
startups and shutdowns instead of fulfilling HTTP requests.

As for scalability, CGI inherently has nothing to do with it. As we know, whether command line
arguments, environment variables or stdin/stdout are used for writing to or reading from CGI
programs, all of them are limited to the local machine, not involving networking or distributed
mechanisms at all. Contrastingly, Java servlets and their supporting environments are capable
of scalability. I will talk about this in future classes.

Another approach to generating dynamic content is web server modules. For instance, the
Apache httpd web server allows dynamically loadable modules to run on startup. These mod-
ules can answer on pre-configured HTTP request patterns, sending dynamic content to the
HTTP client/browser. This high-performance method of generating dynamic web application
content has enjoyed some success over the years, but it has its issues as well. Web server mod-
ules can be written in a platform-independent way, but there is no web server implementation-
independent standard for web server modulesthey’re specific to the server you write them for,
and probably won’t work on any other web server implementation.

Now let us take a look at the Java side. Java brought platform independence to the server,
and Sun wanted to leverage that capability as part of the solution toward a fast and platform-
independent web application standard. The other part of this solution was Java servlets. The
idea behind servlets was to use Java’s simple and powerful multithreading to answer requests
without starting new processes. You can now write a servlet-based web application, move it
from one servlet container to another or from one computer architecture to another, and run
it without any change (in fact, without even recompiling any of its code).

2

2.2 What are Servlets and JSP?

Briefly, a servlet is a Java program designed to run in a servlet container (we hope you didn’t
catch that circular definition), and a JSP is a web page that can call Java code at request
time. If you’re a system administrator or web master, you can think of JSPs as just another
scripting and templating language for HTML pages; you can learn to write JSPs that call Java
objects much as you might have used objects in JavaScript. The difference is that the Java
runs on the server side, before the web page is sent to the browser. It’s more like PHP, or even
ASP. Writing Java classes such as servlets and JSP custom tags, however, is a task probably
best left to people trained in Java programming.

More precisely, a servlet is a Java program that uses the javax.servlet package, subclasses
either the javax.servlet.http.HttpServlet or javax.servlet.GenericServlet Java class,
performs some processing (anything the programmer wants that the servlet container allows)
in response to user input (such as clicking on a link or filling in and submitting a web form),
and generates some kind of output that might be useful on the Web. A servlet can, of course,
generate an HTML page, but servlets can and have been written to generate graphs and charts
in GIF, PNG, and JPEG formats; printed documents in PDF; or any format the developer
can program.

A Java Server Page is basically an HTML page that can call Java language functionality. The
design goal of JSPs is to remove “raw” Java code from the web page markup and to have the
Java code isolated into external modules that get loaded into the JSP at runtime.

The following gives a servlet example:

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** A servlet that prints a web page with the date at the top.

*/

public class Hello extends HttpServlet {

/** Called when the user clicks on a link to this servlet

* @parameter request Encapsulates the details about the input.

* @parameter response Encapsulates what you need to get a reply to the

* user’s browser.

*/

public void doGet(HttpServletRequest request,

HttpServletResponse response) throws IOException {

// Get a writer to generate the reply to user’s browser

3

PrintWriter out = response.getWriter();

// Generate the HTTP header to say the response is in HTML

response.setContentType("text/html");

out.println("<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 Transitional//EN\"");

out.println("\t\"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional. dtd\"");

out.println(">");

out.println();

out.println("<html><head><title>Hello from a Servlet</title></head> ");

out.println("<body>");

out.println("<p>Time on our server is " + new Date() + "</p>");

out.println("<h1>Hello from a servlet</h1>");

out.println("<p>The rest of the actual HTML page would be here...</p> ");

out.println("</body></html>");

}

}

The result was that the calls to out.println often outweighed the actual HTML (and when
they didn’t, it still felt like it to the developer). So Java Server Pages, or JSPs, were developed.
You can think of JSPs mainly as HTML pages containing some Java code, instead of Java code
containing some HTML. In other words, a JSP is just a servlet turned inside out! So, the above
example could be written as the following JSP, which may be named as date.jsp:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html><head><title>Hello from a JSP</title></head>

<body>

<p>Time on our server is <%= new java.util.Date() %></p>

<h1>Hello from a JSP</h1>

<p>The rest of the actual HTML page would be here...</p>

</body>

</html>

The first time a user views the ”page,” the JSP engine very cleverly turns it inside out so that
it can be run as a servlet. In the simplest case, all it does is put out.println calls around each
piece of HTML. But then why bother with servlets at all? Excellent question. The answer, of
course, is that you can do much more than just print HTML.

More details about servlets and JSP is coming up in the following classes.

3 Installing Tomcat

Refer to Activating Tomcat 5.0 and Servlet Applications for the instructions for installing
Tomcat on Solaris platform.

4

http://www.cs.gc.cuny.edu/~jniu/teachings/csc31800/programs/tomcat.html

4 Web Applications on Tomcat

Tomcat provides an implementation of both the servlet and JSP specifications. This section
discusses what a web application looks like exactly on Tomcat and how we deploy it.

4.1 Layout of a Web Application

As we mentioned above, a web application is a collection of static HTML files, dynamic JSPs,
and servlet classes. It is defined as a hierarchy of directories and files in a standard layout.
Such a hierarchy can be accessed in its ”unpacked” form, where each directory and file exists
in the filesystem separately, or in a ”packed” form known as a Web ARchive, or WAR file. The
former format is more useful during development, while the latter is used when you distribute
your application to be installed.

The top-level directory of your web application hierarchy is also the document root of your
application. Here, you will place the HTML files and JSP pages that comprise your applica-
tion’s user interface. When the system administrator deploys your application into a particular
server, he or she assigns a context path to your application. Thus, if the system administra-
tor assigns your application to the context path /catalog, then a request URI referring to
/catalog/index.html will retrieve the index.html file from your document root. When you
do experiments, you yourself are the administrator. To put your web application working on
Tomcat, you create a subdirectory under Tomcat’s webapps directory, which is the context
path where you are supposed to put your web application files. Figure 1 shows the general
layout of a web application, where sample webapp is assumed to be the context of your web
application.

As you can see, the web pages (whether static HTML, dynamic JSP, or another dynamic
templating language’s content) can go in the root of a web application directory or in almost any
subdirectory that you like. Images often go in a /images subdirectory, but this is a convention,
not a requirement. The WEB-INF directory contains several specific pieces of content. First,
the classes directory is where you place Java class files, whether they are servlets or other
class files used by a servlet, JSP, or other part of your application’s code. Second, the lib

directory is where you put Java Archive (JAR) files containing packages of classes. Finally,
the web.xml file is known as a deployment descriptor, which contains configuration for the web
application, a description of the application, and any additional customization.

When you install an application into Tomcat, the classes in the WEB-INF/classes/ directory,
as well as all classes in JAR files found in the WEB-INF/lib/ directory, are made visible to
other classes within your particular web application. Thus, if you include all of the required
library classes in one of these places, you will simplify the installation of your web application
– no adjustment to the system class path (or installation of global library files in your server)
will be necessary.

5

Figure 1: Servlet Web Application File Layout

4.2 Application Deployment

Once you have gotten all the files of your web application ready, it is time to deploy the
application on Tomcat. This step can be done in two ways to be explained respectively in the
following parts.

4.2.1 Deploying “Unpacked” Servlets and Java Server Pages

A web application can be deployed in Tomcat by simply copying the unpacked directory hier-
archy into a subdirectory in directory $CATALINA_HOME/webapps/, where $CATALINA_HOME is
the directory where Tomcat is installed.

As mentioned above, the /WEB-INF/web.xml file contains the Web Application Deployment
Descriptor for your application. As the filename extension implies, this file is an XML docu-
ment, and defines everything about your application that a server needs to know.

For servlets or JSPs to be accessible, you must configure the URI to which a servlet or a JSP is
mapped by providing a servlet-mapping element in the WEB-INF/web.xml file, for example.
Listing the servlet in the descriptor is required if you want to provide an alternate mapping,
pass any initialization parameters to the servlet, specify loading order on startup, and so on.
The servlet element is an XML tag that appears near the start of web.xml, and it is used
for all of these tasks.

Here is an example of a servlet with most of its allowed subelements:

6

<servlet>

<icon>

<small-icon>/images/tomcat_tdg16x16.jpg</small-icon>

</icon>

<servlet-name>InitParams</servlet-name>

<display-name>InitParams Demo Servlet</display-name>

<description>

A servlet that shows use of both servlet- and

webapp-specific init-params

</description>

<servlet-class>InitParams</servlet-class>

<init-param>

<param-name>myParam</param-name>

<param-value>

A param for the Servlet:

Forescore and seven years ago...

</param-value>

</init-param>

<load-on-startup>25</load-on-startup>

</servlet>

Once you have your servlets in place, you may also need to add JSPs to your application. JSPs
can be installed anywhere in a web application, except under WEB-INF; this folder is protected
against access from the Web, since it can contain initialization parameters such as database
connections, names, and passwords. JSPs can be copied to the root of your web application
or placed in any subdirectory other than WEB-INF. The same goes for any static content, such
as HTML files, data files, and image files.

4.2.2 Deploying Applications in WAR Format

Although you can create directories and copy files using the techniques in the previous section,
there are some advantages to using the Web Application Archive packaging format described
in the servlet specification. A major benefit with Tomcat is automatic deployment: a single
WAR file can be copied directly to Tomcat’s webapps directory, and it will be automatically
available as a context, without requiring any configuration.

Creating WAR files is actually accomplished in the same way you create JAR files: through the
jar command. So, assuming you have your web application set up correctly and completely
in a directory called testapp, you can do the following:

7

$ cd ~/testapp

$ jar cvf ~/testapp.war .

The c says you want to create an archive. The v is optional; it says you want a verbose listing
as it creates the archive. The f is required and says that the argument following the letters
(c, v, f, ...) is an output filename. The subsequent filename arguments are input names, and
they can be files or directories (directories are copied recursively).

That little dot (.) at the end of the above command is importantit means “archive the
contents of the current directory.” Notice also that, although it is a JAR file, we called it
a WAR to indicate that it contains a complete web application; this is recommended in the
servlet specification. Once you’ve issued the command, you should see output similar to the
following:

bash-2.04$ cd testapp

bash-2.04$ jar cvf testapp.war *

added manifest

adding: WEB-INF/(in = 0) (out= 0)(stored 0%)

adding: WEB-INF/classes/(in = 0) (out= 0)(stored 0%)

adding: WEB-INF/classes/Hello.java(in = 1368) (out= 631)(deflated 53%)

adding: WEB-INF/classes/Makefile(in = 580) (out= 360)(deflated 37%)

adding: WEB-INF/classes/Hello.class(in = 1337) (out= 792)(deflated 40%)

adding: WEB-INF/web.xml(in = 1283) (out= 511)(deflated 60%)

adding: index.jsp(in = 367) (out= 253)(deflated 31%)

If you are using Tomcat’s automatic deployment feature, you can copy the new WAR file into
Tomcat’s webapps directory to deploy it. You may also need to restart Tomcat, depending on
your configuration (by default, Tomcat does not need to be restarted when new web applica-
tions are deployed). The web application contained in your WAR file should now be ready for
use.

When Tomcat is started, it will automatically expand the web application archive file into
its unpacked form, and execute the application that way. This approach would typically be
used to install an additional application, provided by a third party vendor or by your internal
development staff, into an existing Tomcat installation. NOTE that if you use this approach,
and wish to update your application later, you must both replace the web application archive
file AND delete the expanded directory that Tomcat created, and then restart Tomcat, in order
to reflect your changes.

4.2.3 Example

Download http://www.cs.gc.cuny.edu/~jniu/teachings/csc31800/programs/testapp.war

and put it in $CATALINA_HOME/webapps/. After you start Tomcat, the web application pre-
sented by testapp.war is ready for use.

8

http://www.cs.gc.cuny.edu/~jniu/teachings/csc31800/programs/testapp.war

You may visit http://[hostname]/testapp/ or http://[hostname]/testapp/hello (servlet
hello visited this time).

Or you can create a subdirectory "testapp" in webapps and uncompress the WAR file in it.
Then you remove the WAR file and restart Tomcat. Now the “unpacked” version is ready for
access.

5 Managing Realms, Roles, and Users

The security of a web application’s resources can be controlled either by the container or by
the web application itself. The J2EE specification calls the former container-managed security
and the latter application-managed security. Tomcat provides several approaches for handling
security through built-in mechanisms, which represents container-managed security. On the
other hand, if you have a series of servlets and JSPs with their own login mechanism, this would
be considered application-managed security. In both types of security, users and passwords are
managed in groupings called realms. This section details setting up Tomcat realms and using
the built-in security features of Tomcat to handle user authentication.

The combination of a realm configuration in Tomcat’s conf/server.xml file and a <security-constraint>
in a web application’s WEB-INF/web.xml file defines how user and role information will be
stored and how users will be authenticated for the web application. There are many ways of
configuring each; feel free to mix and match.

5.1 Realms

In order to use Tomcat’s container-managed security, you must set up a realm. A realm is
simply a collection of users, passwords, and roles. Web applications can declare which resources
are accessible by which groups of users in their web.xml deployment descriptor. Then, a Tomcat
administrator can configure Tomcat to retrieve user, password, and role information using one
or more of the realm implementations.

Tomcat contains a pluggable framework for realms and comes with several useful realm imple-
mentations: UserDatabaseRealm, JDBCRealm, etc.. Later on, we discuss only UserDatabaseRealm.
Java developers can also create additional realm implementations to interface with their own
user and password stores. To specify which realm should be used, insert a Realm element into
your server.xml file, specify the realm to use through the className attribute, and then pro-
vide configuration information to the realm through that implementation’s custom attributes:

<Realm className="some.realm.implementation.className"

customAttribute1="some custom value"

customAttribute2="some other custom value"

<!-- etc... -->

/>

9

5.1.1 UserDatabaseRealm

UserDatabaseRealm is loaded into memory from a static file and kept in memory until Tomcat
is shut down. In fact, the representation of the users, passwords, and roles that Tomcat uses
lives only in memory; in other words, the permissions file is read only once, at startup. The
default file for assigning permissions in a UserDatabaseRealm is tomcat-users.xml in the
$CATALINA_HOME/conf directory.

The tomcat-users.xml file is key to the use of this realm. It contains a list of users who are
allowed to access web applications. It is a simple XML file; the root element is tomcat-users
and the only allowed elements are role and user. Each role element has a single attribute:
rolename. Each user element has three attributes: username, password, and roles. The
tomcat-users.xml file that comes with a default Tomcat installation contains the XML listed
as follows:

<!--

NOTE: By default, no user is included in the "manager" role

required to operate the "/manager" web application. If you

wish to use this app, you must define such a user - the

username and password are arbitrary.

-->

<tomcat-users>

<user name="tomcat" password="tomcat" roles="tomcat" />

<user name="role1" password="tomcat" roles="role1" />

<user name="both" password="tomcat" roles="tomcat,role1" />

</tomcat-users>

The meaning of user and password is fairly obvious, but the interpretation of roles might need
some explanation. A role is a grouping of users for which web applications may uniformly define
a certain set of capabilities. For example, one of the demonstration web applications shipped
with Tomcat is the Manager application, which lets you enable, disable, and remove other web
applications. In order to use this application, you must create a user belonging to the manager
role. When you first access the Manager application, the browser prompts for the name and
password of such a user and will not allow any access to the directory containing the Manager
application until a user belonging to that role logs in.

5.2 Container-Managed Security

Container-managed authentication methods control how a user’s credentials are verified when
a protected resource is accessed. There are four types of container-managed security that
Tomcat supports, and each obtains credentials in a different way:

Basic authentication

The user’s password is required via HTTP authentication as base64-encoded text.

10

When a web application uses basic authentication (BASIC in the web.xml file’s auth-method
element), Tomcat uses HTTP basic authentication to ask the web browser for a username
and password whenever the browser requests a resource of that protected web applica-
tion. With this authentication method, all passwords are sent across the network in
base64-encoded text.

The following shows a web.xml excerpt from a club membership web site with a members-
only subdirectory that is protected using basic authentication. Note that this effectively
takes the place of the Apache web server’s .htaccess files.

<!--

Define the Members-only area, by defining

a "Security Constraint" on this Application, and

mapping it to the subdirectory (URL) that we want

to restrict.

-->

<security-constraint>

<web-resource-collection>

<web-resource-name>

Entire Application

</web-resource-name>

<url-pattern>/members/*</url-pattern>

</web-resource-collection>

<auth-constraint>

<role-name>member</role-name>

</auth-constraint>

</security-constraint>

<!-- Define the Login Configuration for this Application -->

<login-config>

<auth-method>BASIC</auth-method>

<realm-name>My Club Members-only Area</realm-name>

</login-config>

Digest authentication

The user’s password is requested via HTTP authentication as a digest-encoded string.

Form authentication

The user’s password is requested on a web page form.

Form authentication displays a web page login form to the user when the user requests
a protected resource from a web application. Specify form authentication by setting the
auth-method element’s value to "FORM". The Java Servlet Specification Versions 2.2 and
above standardize container-managed login form submission URIs and parameter names

11

for this type of application. This standardization allows web applications that use form
authentication to be portable across servlet container implementations.

To implement form-based authentication, you need a login form page and an authentica-
tion failure error page in your web application, a security-constraint element similar
to those shown above, and a login-config element in your web.xml file like the one
shown as follows:

<login-config>

<auth-method>FORM</auth-method>

<realm-name>My Club Members-only Area</realm-name>

<form-login-config>

<form-login-page>/login.html</form-login-page>

<form-error-page>/error.html</form-error-page>

</form-login-config>

</login-config>

The /login.html and /error.html in the above example refer to files relative to the root
of the web application. The form-login-page element indicates the page that Tomcat
displays to the user when it detects that a user who has not logged in is trying to access
a resource that is protected by a security-constraint. The form-error-page element
denotes the page that Tomcat displays when a user’s login attempt fails.

Client-cert authentication

The user is verified by a client-side digital certificate.

The client-cert (CLIENT-CERT in the web.xml file’s auth-method element) method of
authentication is available only when you’re serving content over SSL (i.e., HTTPS). It
allows clients to authenticate without the use of a passwordinstead, the browser presents
a client-side X.509 digital certificate as the login credential. Each user is issued a unique
digital certificate that the web server will recognize. Once users import and store their
digital certificates in their web browsers, the browsers may present them to the server
whenever the server requests them. If you want to know more about this, please refer to
relating books or online manual of Tomcat.

6 Configuring Tomcat

After you have Tomcat running, you will soon find a need to customize its configuration. For
example, you might want to support virtual hosting.

Configuring Tomcat is done by editing files and restarting Tomcat. The main configuration
files provided with Tomcat that reside in the $CATALINA_HOME/conf directory are:

12

server.xml

The main Tomcat configuration file.

web.xml

A servlet specification standard format configuration file for servlets and other settings
that are global to all web applications.

tomcat-users.xml

The default list of roles, users, and passwords used by Tomcat’s UserDatabaseRealm for
authentication.

catalina.policy

The Java 2 Standard Edition security policy file for Tomcat. We won’t cover this file in
our classes.

The first three files are well-formed XML documents, and they are parsed by Tomcat at startup.

6.1 server.xml

The following gives the major part of server.xml, which will be discussed in details in the
following sections.

<Server port="8005" shutdown="SHUTDOWN" debug="0">

<Service name="Catalina">

<Connector port="8080"

maxThreads="150" minSpareThreads="25" maxSpareThreads="75"

enableLookups="false" redirectPort="8443" acceptCount="100"

debug="0" connectionTimeout="20000"

disableUploadTimeout="true" />

<Connector port="8009"

enableLookups="false" redirectPort="8443" debug="0"

protocol="AJP/1.3" />

<Engine name="Catalina" defaultHost="localhost" debug="0">

<Realm className="org.apache.catalina.realm.UserDatabaseRealm"

debug="0" resourceName="UserDatabase"/>

<Host name="localhost" debug="0" appBase="webapps"

unpackWARs="true" autoDeploy="true"

xmlValidation="false" xmlNamespaceAware="false">

</Host>

</Engine>

</Service>

</Server>

13

6.1.1 Server

The Server element refers to the entire Tomcat server. It accepts the three attributes listed
in Table 1.

Name Meaning Default

port Port number on which to listen for shutdown requests.
This port is accessible only from the computer on which
you are running Tomcat, to prevent people out on the
Internet from shutting down your server.

8005

shutdown The string to be sent to stop the server. SHUTDOWN

debug Amount of debugging information to log. Higher num-
bers mean more debugging detail (and more disk space
used).

0

Table 1: Server attributes

There can be only one Server element in this file because it represents Tomcat itself. If you
need two servers, run two Tomcat instances.

The shutdown attribute is an arbitrary string that will be sent to the running Tomcat instance
when you invoke the catalina script with the stop argument. Since your server.xml file
should not be visible outside your local machine, if you change this string from its default, it
will be harder for outsiders (system crackers) to shut down your server. Similarly, the port

attribute is the port number on which catalina.sh stop will attempt to contact the running
instance. The port number can be changed to any other port that is not in use. Tomcat listens
for these connections only on the localhost address, meaning that it should be impossible to
shut down your machine from elsewhere on the network.

6.1.2 Service

A Service object represents all of the Connectors that feed into an Engine. Each Connector

receives all incoming requests on a given port and protocol, and passes them to the Engine,
which then processes the requests. As such, the Service element must contain one or more
Connector elements and only one Engine. The allowable attributes are shown in Table 2.

You will almost never need to modify this element or provide more than one. The de-
fault instance is called "Tomcat-Standalone", representing Tomcat itself with any number
of Connectors.

14

Name Meaning Default

className Class to implement the service. Must be
org.apache.catalina.core.StandardService,
unless you have some very sophisticated Java
developers on staff.

org.apache.catalina.core.

StandardService

name A display name for the service. Tomcat-Standalone

Table 2: Service attributes

6.1.3 Connector

A Connector is a piece of software that can accept connections (hence the name, derived
from the Unix system call connect()), either from a web browser (using HTTP) or from
another server, such as Apache httpd. All of the Connectors provided with Tomcat support
the attributes shown in Table 3.

Name Meaning Default

className The full Java name of the implement-
ing class, which must implement the
org.apache.catalina.Connector interface.

None; required

scheme Defines the string value returned by
request.getScheme() in servlets and JSPs.
Should be https for an SSL connector.

http

· · · · · · · · ·

Table 3: Connector attributes

Tomcat, in a default installation, is configured to listen on port 8080 rather than the conven-
tional web server port number 80. This is sensible because the default port 80 is often in use,
and because opening a network server socket listener on the default port 80 requires special
privileges on Unix operating systems. However, there are many applications for which it makes
sense to run Tomcat on port 80.

To change the port number, edit the main Connector element in the server.xml file. Find
the XML tag that looks something like this:

<!-- Define a non-SSL Coyote HTTP/1.1 Connector on port 8080 -->

<Connector className="org.apache.coyote.tomcat4.CoyoteConnector"

port="8080" minProcessors="5" maxProcessors="75"

enableLookups="true" redirectPort="8443"

acceptCount="100" debug="0" connectionTimeout="20000"

useURIValidationHack="false" disableUploadTimeout="true" />

15

6.1.4 Engine

An Engine element represents the software that receives requests from one of the Connectors
in its Service, hands them off for processing, and returns the results to the Connector. The
Engine element supports the attributes shown in Table 4.

Name Meaning Default

className The class implementing the engine. Must be
org.apache.catalina.core.StandardEngine.

org.apache.catalina

.core.StandardEngine

(default, so you can
omit this attribute)

defaultHost The nested host that is the default for requests that
do not have an HTTP 1.1 Host: header.

localhost

jvmRoute A tag for routing requests when load balancing is in
effect. Must be unique among all Tomcat instances
taking part in load balancing.

name A display name. Standalone

· · · · · · · · ·

Table 4: Engine attributes

6.1.5 Host

A Host element represents one host (or virtual host) computer whose requests are processed
within a given Engine.

To use virtual hosts in Tomcat, you only need to set up the DNS or hosts data for the host.
For testing, making an IP alias for localhost is sufficient. You then need to add a few lines
to the server.xml configuration file:

<Server port="8005" shutdown="SHUTDOWN" debug="0">

<Service name="Tomcat-Standalone">

<Connector className="org.apache.coyote.tomcat4.CoyoteConnector"

port="8080" minProcessors="5" maxProcessors="75"

enableLookups="true" redirectPort="8443"/>

<Connector className="org.apache.coyote.tomcat4.CoyoteConnector"

port="8443" minProcessors="5" maxProcessors="75"

acceptCount="10" debug="0" scheme="https" secure="true"/>

<Factory className="org.apache.coyote.tomcat4.CoyoteServerSocketFactory"

clientAuth="false" protocol="TLS" />

</Connector>

<Engine name="Standalone" defaultHost="localhost" debug="0">

<Host name="localhost" debug="0" appBase="webapps"

16

unpackWARs="true" autoDeploy="true">

<Context path="" docBase="ROOT" debug="0"/>

<Context path="/orders" docBase="/home/ian/orders" debug="0"

reloadable="true" crossContext="true">

</Context>

</Host>

<Host name="www.somename.com" appBase="/home/somename/web">

<Context path="" docBase="."/>

</Host>

</Engine>

</Service>

</Server>

6.1.6 Context

A Context represents one web application within a Tomcat instance. Your web site is made
up of one or more Contexts. Table 5 is a list of the key attributes in a Context.

Attribute Meaning Default

crossContext Specifies whether ServletContext.getContext

(otherWebApp) should succeed (true) or return null
(false)

false, for generally good
security reasons

docBase URL relative to virtual host None; mandatory

path Absolute path to the directory None; mandatory

reloadable Specifies whether servlet files on disk will be moni-
tored, and reloaded if their time-stamp changes

false

Table 5: Context attributes

Here are some Context examples:

<!-- Tomcat Root Context -->

<Context path="" docBase="/home/ian/webs/daroadweb" debug="0"/>

<!-- buzzinservlet -->

<Context path="/buzzin"

docBase="/home/ian/javasrc/threads/buzzin"

debug="0" reloadable="true">

</Context>

<!-- chat server applet -->

<Context path="/chat" docBase="/home/ian/javasrc/network/chat" />

<!-- darian web -->

<Context path="/darian" docBase="/home/ian/webs/darian" />

17

6.1.7 Realm

A Realm represents a security context, listing users that are authorized to access a given
Context and roles (similar to groups) that users are allowed to be in. So a Realm is like an
administration database of users and groups. Indeed, several of the Realm implementations
are interfaces to such databases.

The only standard attribute for Realm is classname, which must be either one of the supported
realms listed in Table 6 or a custom Realm implementation. Realm implementations must be
written in Java and must implement the org.apache.catalina.Realm interface. The provided
Realm handlers are listed in Table 6.

Name Meaning

JAASRealm Authenticates users via the Java Authentication and Authorization Ser-
vice (JAAS)

JDBCRealm Looks users up in a relational database using JDBC

JNDIRealm Uses a Directory Service looked up in JNDI

MemoryRealm Looks users up in the tomcat-users.xml file or another file in the same
format

UserDatabaseRealm Uses a UserDatabase (which also reads tomcat-users.xml or another
file in the same format) that is looked up in JNDI; intended to replace
MemoryRealm in Tomcat 4.1

Table 6: Tomcat’s Realm implementations

6.2 web.xml

The web.xml file format is defined in the Servlet Specification, and will be used in every
servlet-conforming Java servlet container. This file format is used in two places in Tomcat:
in the $CATALINA_BASE/conf directory and in each web application. Each time Tomcat de-
ploys an application (during startup or when the application is reloaded), it reads the global
conf/web.xml, followed by the WEB-INF/web.xml within your web application (if there is one).
As you’d expect, then, settings in the conf/web.xml file apply to all web applications, whereas
settings in a given web application’s WEB-INF/web.xml apply to only that application.

6.2.1 web-app

The root element of this XML deployment descriptor is web-app; its top-level elements and
the order in which they must appear is shown in Table 7. There are no required elements, but
you should always have at least a display-name element for identification.

18

Element Quantity
allowed

Meaning

icon 0 or 1 A display file, for use in GUI administration tools

display-name 0 or 1 Short name, for use in GUI admin tools

description 0 or 1 Longer description

distributable 0 or 1 Whether the web application can be load-balanced, i.e., dis-
tributed to multiple servers

context-param 0 or more Parameters to be made available to all servlets

servlet 0 or more Short name, class name, and options for a servlet

servlet-mapping 0 or more Specifies any non-default URL for a servlet

mime-mapping 0 or more MIME types for files on server

welcome-file-list 0 or 1 Alternate default page in directories

error-page 0 or more Alternate error page by HTTP error code

security-constraint 0 or more Requires authentication (e.g., for a protected area of a web
site)

login-config 0 or 1 Specifies how the login mechanism is to work for a
security-constraint

security-role 0 or more List name of security role, for use with security-constraint

Table 7: Child elements of web-app

6.3 tomcat-users.xml

This file contains a list of usernames, roles, and passwords, all of which have been explained
before. It is a simple XML file; the root element is tomcat-users, and the only allowed child
elements are role and user. Each role element has one attribute called rolename, and each
user element has three attributes: name, password, and roles.

19

	1 Introduction
	2 Web Applications of Servlets and JSP
	2.1 Advantages
	2.2 What are Servlets and JSP?

	3 Installing Tomcat
	4 Web Applications on Tomcat
	4.1 Layout of a Web Application
	4.2 Application Deployment
	4.2.1 Deploying ``Unpacked" Servlets and Java Server Pages
	4.2.2 Deploying Applications in WAR Format
	4.2.3 Example

	5 Managing Realms, Roles, and Users
	5.1 Realms
	5.1.1 UserDatabaseRealm

	5.2 Container-Managed Security

	6 Configuring Tomcat
	6.1 server.xml
	6.1.1 Server
	6.1.2 Service
	6.1.3 Connector
	6.1.4 Engine
	6.1.5 Host
	6.1.6 Context
	6.1.7 Realm

	6.2 web.xml
	6.2.1 web-app

	6.3 tomcat-users.xml

