
CSc33200: Operating Systems, CS-CCNY, Fall 2003

Midterm Exam Solutions
November 23, 2003

The highest score is 175 and the average is around 115. Since the scores are significantly lower
than previous homework and projects, everyone will receive an increase of 30 points.

1. The Pumpkin Computer uses a segmented addressing scheme in which individual bytes
are accessed by combining a 16-bit segment paragraph and a 16-bit relative offset. SR is
16-bit register that points to the beginning of a 16-byte paragraph that is evenly divisible
by 16. The segment paragraph is treated as if it were shifted left by four bits. SI is a 16-
bit segment index register that contains a relative offset from the segment paragraph
specified in SR. What will be the actual memory address accessed if the contents of SR
are 1234H and the contents of SI are 4392H?

Answer:

Since according to the description, 1234H : 4392H is the address of the destination lo-
cation in main memory based on the segmentation scheme, the actual memory address
in the linear address space is:

1234H << 4 + 4392H = 12340H + 4392H = 166D2H

2. As a deadlock prevention strategy, the hold-and-wait condition may be prevented. If you
are allowed to use semaphores, how would you use this strategy to regulate the requests
for resources so that deadlock is prevented? Give a skeleton of the program in the same
style as the first example regarding the two processes, P and Q, on 10/22’s notes.

Answer:

To avoid circular wait by preventing the hold-and-wait condition, all resources required
by a process may be allocated in the manner of “all at once” or “nothing at all”. The
scheme may be illustrated as follows:

Process P:

...

wait(semaphore)

Get A

Get B

...

1



do_something()

...

Release A

Release B

signal(semaphore)

...

Forcing the processes to request for the various resources in a specific order is another
way to prevent the hold-and-wait condition.

Process P:

...

Get A

Get B

...

do_something()

...

Release A

Release B

...

Process Q:

...

Get A

Get B

...

do_something_else()

...

Release B

Release A

...

3. Prove the correctness of Dekker’s algorithm in the following aspects:

(a) Prove that mutual exclusion is enforced.

Proof 1:

To show mutual exclusion is enforced in Dekker’s algorithm, we prove, based on
Figure 5.3 in the textbook, no any other process can get into its critical section after
one of the processes is already in its critical section.

Suppose process P1 enters its critical section first and remains there. According to
the algorithm, flag[1] must be true.

Since P1 is the only one to get in, another process, say P0, that wants to get in as
well must be executing a statement outside its critical section. Since the while loop
is the only control structure that may block its access, we need only to discuss the
case when P0 is executing the while statement. According to P0(), when flag[1] is
true, P0 won’t be permitted to exit the while loop and thus enter the critical section,
whatever turn is.

Hence, at most one process may be in its critical section at a time. Mutual exclusion
is enforced indeed in Dekker’s algorithm.

Proof 2:

2



Suppose two processes, P0 and P1, are in their respective critical sections in the
purpose of contradiction.

According to Dekker’s algorithm in Figure 5.3 in the textbook, we know:

• For P0, flag[0] is set to true and then flag[1] is checked and confirmed to be
false, which may be denoted by:

...

1 flag[0] = true

...

2 flag[1] = false

...

• For P1, flag[1] is set to true and then flag[0] is checked and confirmed to be
false, which may be denoted by:

...

3 flag[1] = true

...

4 flag[0] = false

...

Suppose P0 entered the critical section no later than P1, which means t2 ≤ t4,
noting that the confirmation of the falsity of the condition in the outer while loop
is the last action a process takes before it enters the critical section.

Then we compare t2 and t3. Since once flag[1] is set to true at t3, it will by no
means become false, we know t2 < t3 must hold. We use < here instead of ≤
because a location in main memory cannot be accessed simultaneously by multiple
processes. Thus we know

t1 < t2 < t3 < t4

However once flag[0] is set to true at t1, it will by no means become false before
P0 finally exits the critical section, noting we suppose that both P0 and P1 are in the
critical sections at the present time. Thus it is impossible to have checked flag[0]
to be false at t4, which according to our assumption has happened.

Thus a contradiction is drawn. We cannot assume two processes are in the critical
sections at any moment, meaning at most one process may access the exclusive
resources at one time. So mutual exclusion is enforced in Bekker’s algorithm.

(b) Prove that a process requiring access to its critical section will not be delayed in-
definitely. That is to show there is no starvation.

Proof:

To show there is no starvation in Dekker’s algorithm, we prove, based on Figure 5.3
in the textbook, any process can eventually enter its critical section if it wants.

3



Suppose process P1 wants to enter its critical section. Since the while loop is the
only control structure that may block its access, we simply suppose it is executing
the while statement.

• If flag[0] = false:
P1 will surely fail in checking for while (flag[0]) and thus get into the critical
section. One exception is P1 may not be able to reach while (flag[0]), due to
being trapped at while (turn == 0). If it is being blocked there, flag[1] has
been set to be false to show courtesy. Thus P1 will in no way present P0 from
accessing the exclusive resources, which will enable P0 to enter the critical
section and finally set turn to 0 and flag[0] to false. Thus P1 may eventually
get out of the loop of while (turn == 0).
We need not discuss the case when P0 is not running, because for P1 to arrive at
while (turn == 0), flag[0] must have once been true and P0 must have been
active, which shows turn and flag[1] have obtained or will have eventually
the values giving the green light for P1 to enter the critical section.

• Or otherwise flag[0] = true:
Similar to the ending part of the discussion in the first case, turn and flag[1]
have been or will be eventually given 1 and false respectively, which guaran-
tees P1 can exit the while loop at last and get into the critical section.

In either case, P1 will finally be able to enter its critical section. So due to the
equivalence of all the individual processes, any process, if it wants, can eventually
visit the exclusive resources. Hence no starvation is in Dekker’s algorithm.

4. The following figure illustrates that a process may be blocked and placed into the corre-
sponding event queue due to waiting for an event of a specific type, but it suggests that
a process can only be in one event queue at a time.

(a) Is it possible that you would want to allow a process to wait on more than one
event at the same time? Provide an example.

Answer:

Yes, it is possible that a process waits on more than one event at the same time. For
example, a process may need to transfer data from one device to another. In this
case, it may request both devices at once and wait until both are available for use.
Another example is that a network application may wait on multiple sockets until
data packets arrive at any of them.

(b) In that case, how would you modify the queuing structure of the figure to support
this new feature? Give the definition of the structures in C/C++ and illustrate it in
a picture.

4



Ûª»²¬ ï É¿·¬

Ûª»²¬ î É¿·¬

Ûª»²¬ ² É¿·¬

Ü·°¿¬½¸
Î»´»¿»Î»¿¼§ Ï«»«»

ß¼³·¬
Ð®±½»±®

Ì·³»±«¬

Ûª»²¬ ï Ï«»«»
Ûª»²¬ ï
Ñ½½«®

Ûª»²¬ î
Ñ½½«®

Ûª»²¬ ²
Ñ½½«®

Ûª»²¬ î Ï«»«»

Ûª»²¬ ² Ï«»«»

{
{
{

Answer:

Obviously in the event queue model, at least 3 kinds of structures are needed:
process, event, and process-event pair, which is defined for event queue nodes.

To enable a process to wait on multiple events at the same time, a chain may be
constructed to track all the events that a process is expecting. The head pointer of
the chain is stored in struct process .

The nodes in event queues thus need additional fields for the event chains they
belong to: struct pe node *pred, *succ .

Another issue that needs to be dealt with is that though a process may wait on
more than one event at a time, either all the events are required for the process
to become READY or any of them is sufficient to do so. Thus count is defined
in struct process . In the first case, count is initialized to be the number of
events on which the process is waiting, while in the second case, count is set to
1. Whenever an event occurs, count is first decreased by 1 and the process-event
pair node is removed from both the corresponding event queue and event chain.
Then count is checked if it becomes 0. If yes, the process is then sent to the READY
process queue for dispatching; otherwise continues to wait on the rest of events.

struct pe_node {

// for neighbors in the same event queue

struct pe_node *next, *prev;

// for neighbors in the event chain for the same process

struct pe_node *pred, *succ;

struct process *p;

struct event *e;

}

5



struct process {

PCB *pPCB;

struct pe_node *head;

int count;

}

struct event {

char *desc;

struct pe_node *head;

}

5. Do the followings regarding message passing.

(a) Describe how mutual exclusion and synchronization are supported with message
passing.

Answer:

(By default, send and receive primitives that we use for mutual exclusion and
synchronization are respectively non-blocking and blocking.)

To support mutual exclusion, a mailbox should be created first and initialized to
contain a token message. Each process that is going to access critical resources has
to invoke receive first to obtain the token before moving on. If permitted, when
it exits the critical section, it again sends the token back to the mailbox so that other
processes may enter their critical sections later on.

To support synchronization (meaning that a process has to wait until another process
is ready for some action), similarly a mail box is needed but is initially empty. The
process that is supposed to wait should invoke receive and the process that is
expected should invoke send indicating its availability.

(b) Give the solution to the producer/consumer problem with an infinite buffer using
message passing.

Answer:

producer() {

while (true) {

product = produce();

send(mayconsume, product);

}

}

consumer() {

while (true) {

6



receive(mayconsume, product);

consume(product);

}

}

main() {

create_mailbox(mayconsume);

parbegin(producer, consumer);

}

(c) Give a fair solution to the barbershop problem using message passing in a different
way from the solution given in the textbook. (Hint: You may assign a unique number
to each barber chair instead of each customer.)

Answer:

void main() {

create_mailbox(max_capacity);

for (int i=0; i<20; i++)

send(max_capacity, null);

create_mailbox(sofa);

for (int i=0; i<4; i++)

send(sofa, null);

create_mailbox(chair);

for (int i=0; i<3; i++) {

send(chair, i);

create_mailbox(finished[i]);

}

create_mailbox(cust_ready);

create_mailbox(coord);

for (int i=0; i<3; i++)

send(coord, null);

create_mailbox(payment);

create_mailbox(receipt);

}

void customer() {

int chair_no;

receive(max_capacity, -);

enter_shop();

receive(sofa, -);

sit_on_sofa();

receive(chair, chair_no);

get_up_from_sofa();

send(sofa, null);

sit_in_chair(chair_no);

send(cust_ready, chair_no);

receive(finished[chair_no], -);

leave_chair();

send(chair, chair_no);

pay();

send(payment, null);

receive(receipt, -);

exit_shop();

send(max_capacity, null);

}

void barber() {

int chair_no;

receive(cust_ready, chair_no);

receive(coord, -);

cut_hair();

send(coord, null);

send(finished[chair_no], null);

}

7



void cashier() {

receive(payment, -);

receive(coord, -);

accept_pay();

send(coord, null);

send(receipt, null);

}

In the above solution, the hair-cut sessions are differentiated by the chair NOs in-
stead of customer IDs used in the textbook. And with message passing, the interac-
tion between a barber and a customer is always associated with the corresponding
chair NO, which is transferred as a message between them.

6. Use semaphores to solve the following problem:

You have been hired by Greenpeace Organization to help the environment.
Because unscrupulous commercial interests have dangerously lowered the
whale population, whales are having synchronization problems in finding a
mate. The trick is that in order to have children, three whales are needed,
one male, one female, and one to play matchmaker – literally, to push the
other two whales together (I’m not making this up!). Your job is to write the
three procedures Male() , Female() , and Matchmaker() . Each whale is
represented by a separate process. A male whale calls Male() , which waits
until there is a waiting female and matchmaker; similarly, a female whale
must wait until a male whale and a matchmaker are present. Once all three
are present, all three return.

Answer:

semaphore male = 0, female = 0;

semaphore male_start = 0, male_end = 0;

semaphore female_start = 0, female_end = 0;

Male() {

signal(male);

wait(male_start);

...

wait(male_end);

}

Female() {

signal(female);

wait(female_start);

...

wait(female_end);

}

8



Matchmaker() {

wait(male);

wait(female);

signal(male_start);

signal(female_start);

match();

signal(male_end);

signal(female_end);

}

Note that this is an unfair solution, in which a matchmaker may send the male start /
female start signal to another male/female whale rather than the one that has been
allocated to it after wait(male) / wait(female) . The same problem happens when
a male end / female end signal is sent out. These problems may be solved in the
same way as the barbershop example in the text by using queues or the solution we
give above in Question 5(c).

9


