
CSc33200: Operating Systems, CS-CCNY, Fall 2003 Jinzhong Niu December 8, 2003

I/O Management and Disk Scheduling

1 Diversity of I/O devices

There are all kinds of I/O devices in an operating system. Although they never play a centric
role in the system, the management of these devices are absolutely the messiest aspect of
operating system design.

Why? I/O devices may differ from one another on all kinds of aspects. Some are human
readable, suitable for communicating with the computer users, such as printers, monitors,
speakers, keyboards, and mice. Some are machine readable, suitable for communicating
with electronic equipments, such as disks and tapes. Some others are otherwise used for
communicating with remote devices, such as modems and network cards.

The above categories are obtained based on the functions of I/O devices. What’s more, even
those that fall into one category may still be different from one another in various aspects.
They may have different data transferring speed, different complexity of control, etc.

2 Operating system design issues

Two objects are paramount in designing the I/O management facility: generality and effi-
ciency.

2.1 Generality

We always desire to manage all the I/O devices in a uniform manner, however the above
differences make it difficult to achieve this goal, both from the point of view of the operating
system and from the point of view of user processes.

What we can do is to use a hierarchical approach to the design of the I/O function, which
is similar to the abstraction scheme in object orientation theory. That is the routines that are
involved in dealing with accessing I/O devices are divided into several layers, and each layer
provides a concise interface for the immediate upper-level layer, so that most of the details

1



of the I/O devices are hidden in lower-level layers and the user processes may operate the
devices in terms of general functions, such as read, write, open, close, lock, unlock.

What kind of hierarchy should be used depends on the type of I/O devices of concern. Fig-
ure 1 shows the organization of three different types of I/O devices.

Ë»®
Ð®±½»»

Ý±³³«²·½¿¬·±²
ß®½¸·¬»½¬«®»

Ü»ª·½»
×ñÑ

Í½¸»¼«´·²¹
ú Ý±²¬®±´

ø¾÷ Ý±³³«²·½¿¬·±² °±®¬

Ø¿®¼©¿®»

Ë»®
Ð®±½»»

Ô±¹·½¿´
×ñÑ

Ü»ª·½»
×ñÑ

Í½¸»¼«´·²¹
ú Ý±²¬®±´

ø¿÷ Ô±½¿´ °»®·°¸»®¿´ ¼»ª·½»

Ø¿®¼©¿®»

Ë»®
Ð®±½»»

Ü·®»½¬±®§
Ó¿²¿¹»³»²¬

Ú·´»
Í§¬»³

Ð¸§·½¿´
Ñ®¹¿²·¦¿¬·±²

Ü»ª·½»
×ñÑ

Í½¸»¼«´·²¹
ú Ý±²¬®±´

ø½÷ Ú·´» §¬»³

Ø¿®¼©¿®»

Figure 1: A model of I/O organization

Figure 1 (a) depicts the simplest case, a local peripheral device, which may be accessed in
terms of a stream of bytes or records. The layers involved are as follows:

• Logical I/O deals with the I/O device as a logical resource without concerning the de-
tails of actually controlling the device. This layer provides a simple interface for user
processes: specifying a unique ID to this device and simple control commands, such as
open, close, read, write, etc..

2



• Device I/O converts the requested operation from the logical I/O layer into a series of
I/O instructions. Data may be buffered in this layer and forwarded in the format that is
acceptable to the destination layer.

• Scheduling and control: actually interacts with the I/O device, including queuing and
scheduling of I/O operations, handling interrupts, collecting and reporting status infor-
mation, etc.

For a communication device, rather than logical I/O, a communication protocol layer is used
instead as Figure 1 (b) shows.

For a storage device on which a file system is used, more complexity is involved. Besides
scheduling and control layer and device I/O layer, the following layers are also used:

• Directory management provides user processes a hierarchical view of the collection of
files stored on the device. Operations may be performed to add, or delete a directory.

• File system provides a flat view of a collection of files. At this layer, a directory file
is treated in the same way as other regular files, although the content of this special
file includes information about files under this directory. The upper level may use this
interface of this layer to open, close, read, write, add, or delete a file. Access control may
also be included here.

• Physical organization converts the logical references to files into physical addresses in
terms of track, sector. Allocation and deallocation of storage space are also treated in
this layer.

2.2 Efficiency

Efficiency is the other objective in I/O subsystem design. Remember, at the beginning of this
course, we have discussed three popular ways to access I/O devices:

• Programmed I/O means the microprocessor is involved all the way through the I/O
process. The microprocessor issues command to initiate the I/O device, tell it what to
do, and wait until the I/O process is finished. Almost all I/O devices are slower than the
microprocessor, so the latter has to be idle for a long time, which results in inefficiency.

• Interrupt-driven I/O otherwise aims to let the microprocessor and the I/O devices work
simultaneously. With this scheme, the microprocessor, after issuing a command on be-
half of a process to start an I/O operation, may turn to execute another process. When

3



the I/O operation completes, an I/O interrupt will be generated to signal the micropro-
cessor to resume the former process. Although switching between different processes
involves overhead, it is still worth doing unless the context switching is too frequent.

• DMA When a large amount of data needs to be transferred to/from an I/O device, it is
not realistic any longer to take the interrupt-driven approach because frequent context
switching is unavoidable in this case. To deal with this problem, the DMA approach is
taken, in which a DMA controller is responsible to control the data exchange between
main memory and an I/O device. What the microprocessor needs to do is simply to
send necessary information to the DMA controller at the very beginning. An interrupt
is also generated finally so that the microprocessor knows the completion of the whole
DMA process.

By considering whether the processor is directly involved in the I/O process and whether
interrupt schemes are used or not, we may have Table 1, showing the similarity and difference
among the above three schemes:

Table 1: I/O techniques
No Interrupts Use of Interrupts

I/O-to-memory transfer
through processor

Programmed I/O Interrupt-driven I/O

Direct I/O-to-memory
transfer

- Direct memory access (DMA)

From the above discussion, we can see the efficiency of the whole system is increased step by
step more or less.

3 I/O buffering

Let’s begin with an example to introduce the necessity of I/O buffering. Suppose a user
process wishes to read a block of data from a tape into a data area in the address space of this
process at virtual location 1000. The most straightforward way to do so in the process is to
execute an I/O command to the tape device and then wait for the data to be available.

However there are two problems with this approach. First, the process has to wait a long time
before the completion of the operation due to the low speed of the tape device. Second, this
data exchange may interfere with the swapping mechanism in the operation system. That is,
before the whole operation is finished, the data area in the process to contain data from the

4



tape has to remain in the main memory. Thus this section of space must be locked in some
way so that it will not be swapped out to secondary memory.

To avoid the above inefficiency and inconvenience, it is possible to perform data input trans-
fers in advance of requests being made or output transfers after the request is made, which
is known as buffering. This section will discuss some of buffering schemes to improve the
performance of the system.

Ñ°»®¿¬·²¹ Í§¬»³

×ñÑ Ü»ª·½»
×²

ø¿÷ Ò± ¾«ºº»®·²¹

Ë»® Ð®±½»

Ñ°»®¿¬·²¹ Í§¬»³

×ñÑ Ü»ª·½»
×² Ó±ª»

ø¾÷ Í·²¹´» ¾«ºº»®·²¹

Ë»® Ð®±½»

Ñ°»®¿¬·²¹ Í§¬»³

×ñÑ Ü»ª·½»
×² Ó±ª»

ø½÷ Ü±«¾´» ¾«ºº»®·²¹

Ë»® Ð®±½»

Ñ°»®¿¬·²¹ Í§¬»³

×ñÑ Ü»ª·½»
×² Ó±ª»

ø¼÷ Ý·®½«´¿® ¾«ºº»®·²¹

Ë»® Ð®±½»

{
{

Figure 2: I/O buffering schemes

5



3.1 Single buffer

The simplest buffering scheme is single buffering. As illustrated in Figure 2 (b), when a user
process issues an I/O request, the operating system allocates a buffer in the system portion of
main memory to the operation.

With this scheme, data is first gradually transferred into the system buffer. When the transfer
is complete, the data is then moved into the user process space. Note that this is not the end
of the story. The I/O facility in the operating system continues to read more data from the
device, which is called reading ahead. This is performed because user processes usually access
data on an I/O device sequentially.

Thus this approach will generally speedup the I/O operations requested by a process. After
a block of data becomes available and is delivered to the user process, the operation system
may read ahead another block of data while the process is processing the former block. This
approach also makes it possible to swap out the process that made I/O requests.

To support this mechanism, more effort needs to be made in the operating system, such as
tracking the buffers allocated to user processes. What’s more, the swapping of the process
though is made possible, another problem arises. That is if the I/O request has been made
and the process is to be swapped out to the same secondary storage device as involved in
the I/O request, then the swapping will not happen until after the I/O request is finished.
Nevertheless, at this moment, it may not be appropriate any more to swap out the process,
since the data it has been waiting for are available and it may proceed to process them. Despite
these disadvantages, it is still worth using the buffering scheme.

A similar circumstance will occur regarding outbound data transfer. When data are to be
outputted to a device, they may be copied from the requesting process into a system buffer
first. Then the process may simply continue or be swapped out.

3.2 Double buffer

An improvement of single buffering is to use two system buffers for a user process, called
double buffering, as Figure 2 (c) shows. In this case, moving data from one system buffer
to the process and reading data from the I/O device to the other buffer may be performed
simultaneously. Again, this improvement comes at the cost of increased complexity.

3.3 Circular buffer

The idea of double buffering may be generalized to circular buffering. That is more than two
buffers are used and the collection of these buffers is referred to as a circular buffer, as illus-

6



trated in Figure 2 (d). In this way, although the I/O device is much slower, there may be
enough data in the system buffers for the process to read.

4 Disk Scheduling

Above we discussed how I/O access is improved step by step from programmed I/O to DMA
and how I/O buffering could be used, but the focus there is the I/O subsystem in general.
We may also improve the I/O performance based on the characteristics of various concrete
I/O devices. Disks are the most commonly used I/O devices in a computer. This section talks
about how to schedule I/O accesses to disks.

4.1 Disk performance parameters

A hard disk is usually made up of multiple platters, as illustrated in Figure 3, each of which
use two heads to write and read data, one for the top of the platter and one for the bottom
(this isn’t always the case, but usually is). Either side of each platter is made up of multiple
tracks, which in turn are divided into several sectors, as depicted in Figure 4.

Figure 3: The typical structure of a hard disk

7



Figure 4: The layout of one side of a platter

The heads that access the platters are locked together on an assembly of head arms, which
may move in only two directions, towards the spindle or the opposite. This means that all the
heads move in and out together, so each head is always physically located at the same track
number. It is not possible to have one head at track 0 and another at track 1,000. Besides the
movement of the heads, the spindle may rotate so that the heads may access a specific sector
on the track they are located at.

And because of this arrangement, often the track location of the heads is not referred to as
a track number but rather as a cylinder number. A cylinder is basically the set of all tracks
that all the heads are currently located at. The addressing of individual sectors of the disk is
traditionally done by referring to cylinders, heads and sectors (CHS).

When the disk drive is operating, the disk is rotating at constant speed. Thus once the head
is positioned at the desired track, it simply waits until the desired sector is under it. The time
taken for the head to move is known as seek time and the time taken for the desired sector to
become available to the head is known as rotational delay or rotational latency. The sum of
these two delays is the access time. Once the head is in position, the read or write operation
may then be performed, which is the data transfer portion of the operation. Besides these two
kinds of time cost, an I/O request may probably also have to wait in a queue of I/O requests
until the corresponding device becomes available. Based on the analysis, the general timing
diagram of disk I/O transfer is shown in Figure 5.

8



É¿·¬ º±®
Ü»ª·½»

É¿·¬ º±®
Ý¸¿²²»´

Í»»µ Î±¬¿¬·±²¿´
Ü»´¿§

Ü¿¬¿
Ì®¿²º»®

Ü»ª·½» Þ«§

Figure 5: Timing of a disk I/O transfer

If we use Ts for seek time, Tr for rotational delay, and T for transfer time, then the total
average access time can be expressed as:

Ta = Ts +
1
2r

+
b

rN

where r is rotation speed of the disk in revolutions per second, b is the number of bytes to be
transferred, and N is the number of bytes on a track.

Obviously Ts and Tr for each specific I/O request are totally determined by the physical
disk device and there is no way to improve the performance in operating system design by
reducing these values. However things are different if we consider multiple I/O requests as
a whole and schedule them elegantly. For example, there are 3 requests, respectively for a
sector at Track 4, 5 and 9. Obviously Track 4 and 5 should be accessed consecutively before
or after Track 9 is accessed. We should always avoid the access order of Track 4, 9, and 5. The
factor that makes difference here is seek time.

4.2 Disk scheduling policies

We have shown by an example that disk I/O performance may be improved by scheduling
multiple requests in the purpose of minimizing the sum of seek times of these I/O requests.

Typically, the operating system maintains a queue of request for each I/O device. Thus for
each disk, we may consider all kinds of scheduling algorithms and compare their perfor-
mances. We may select random scheduling as a benchmark to evaluate other strategies.

Suppose we have a disk with 200 tracks and the requested tracks, in the order received, are
55, 58, 39, 18, 90, 160, 150, 38, 184. Figure 6 shows the comparison of different disk request
scheduling algorithms.

4.2.1 FIFO

FIFO is again the most straightforward policy to schedule the requests, in which the requests
are processed in the same order as they are received. This strategy has the advantage of being

9



ïçç

ïéë

ïëð

ïîë

ïðð

éë

ëð

îë

ð

ø¿÷ Ú×ÚÑ Ì·³»

ïçç

ïéë

ïëð

ïîë

ïðð

éë
ëð

îë

ð

ø¾÷ ÍÍÌÚ

ïçç

ïéë

ïëð

ïîë

ïðð

éë

ëð

îë

ð

ø½÷ ÍÝßÒ

ïçç

ïéë

ïëð

ïîë

ïðð

éë

ëð

îë

ð

ø¼÷ ÝóÍÝßÒ

Figure 6: Comparison of disk scheduling algorithms

10



ø¿÷ Ú×ÚÑ

ø¬¿®¬·²¹ ¿¬ ¬®¿½µ ïðð÷

ø¾÷ ÍÍÌÚ

ø¬¿®¬·²¹ ¿¬ ¬®¿½µ ïðð÷

ø½÷ ÍÝßÒ

ø¬¿®¬·²¹ ¿¬ ¬®¿½µ ïððô ·² ¬¸»
¼·®»½¬·±² ±º ·²½®»¿·²¹ ¬®¿½µ

²«³¾»®÷

ø¼÷ ÝóÍÝßÒ

ø¬¿®¬·²¹ ¿¬ ¬®¿½µ ïððô ·² ¬¸»
¼·®»½¬·±² ±º ·²½®»¿·²¹ ¬®¿½µ

²«³¾»®÷

Ò»¨¬ ¬®¿½µ
¿½½»»¼

Ò«³¾»® ±º
¬®¿½µ
¬®¿ª»®»¼

Ò»¨¬ ¬®¿½µ
¿½½»»¼

Ò«³¾»® ±º
¬®¿½µ
¬®¿ª»®»¼

Ò»¨¬ ¬®¿½µ
¿½½»»¼

Ò«³¾»® ±º
¬®¿½µ
¬®¿ª»®»¼

Ò»¨¬ ¬®¿½µ
¿½½»»¼

Ò«³¾»® ±º
¬®¿½µ
¬®¿ª»®»¼

ëë ìë çð ïð ïëð ëð ïëð ëð
ëè í ëè íî ïêð ïð ïêð ïð
íç ïç ëë í ïèì îì ïèì îì
ïè îï íç ïê çð çì ïè ïêê
çð éî íè ï ëè íî íè îð

ïêð éð ïè îð ëë í íç ï
ïëð ïð ïëð ïíî íç ïê ëë ïê

íè ïïî ïêð ïð íè ï ëè í
ïèì ïìê ïèì îì ïè îð çð íî

ßª»®¿¹» »»µ
´»²¹¬¸

ëëòí ßª»®¿¹» »»µ
´»²¹¬¸

îéòë ßª»®¿¹» »»µ
´»²¹¬¸

îéòè ßª»®¿¹» »»µ
´»²¹¬¸

íëòè

Table 2: Comparison of disk scheduling algorithms

fair, however it behaves to much extent like random scheduling because I/O requests come in
in a random manner and are not likely to access tracks in the way described by the principle
of locality.

4.2.2 Priority-Based

Again as in other types of scheduling, different priorities may be assigned to different re-
quests, for example requests made by short processes or interactive processes may be as-
signed higher priorities, which helps to provide good interactive response time. However
longer processes may have to wait excessively long times or even suffer from starvation. Ob-
viously FIFO does not take advantage of the location information of tracks requested.

4.2.3 Shortest Service Time First

The SSTF policy is to select the disk I/O request that requires the least movement of the disk
arm from its current position. Although a series of optimal decisions each at one step do
not guarantee an overall optimal solution, this policy should have a better performance than
FIFO. Figure 6 (b) and Table 2 (b) show the performance of SSTF on our example assuming
the initial location of the read/write head is Track 100.

4.2.4 SCAN

The SSTF policy clearly may lead to the starvation of some requests if new requests come in
constantly and are scheduled before the former. A simple alternative that prevents this kind

11



of starvation is the SCAN policy, which mimics the behavior of an elevator.

With SCAN, the arm keeps moving in one direction, fulfilling all outstanding requests en
route, until it reaches the last track in that direction or there are no more requests ahead.
The latter refinement is sometimes referred to as the LOOK policy. Figure 6 (c) and Table 2
(c) show the performance of SCAN, which is almost the same as the SSTF policy, though in
theory, SCAN has a better performance than SSTF.

It is not difficult to see that the SCAN policy favors the tracks in the middle over the inner-
most and outer-most ones since within one cycle of header movement, the latter are reaches
only once but all the others twice.

4.2.5 C-SCAN

To avoid the problem in SCAN, a circular SCAN policy (C-SCAN) may be used. With C-
SCAN, when the last track has been visited in one direction, the arm is returned to the op-
posite end of the disk and the scan begins again. In this way, each track receives identical
service.

5 Disk cache

Finally to speed up the disk I/O access, a disk cache, which is actually a portion of main mem-
ory, may be used. The principle of the use of a disk cache is all the same as the cache between
a micro-processor and the main memory. Some replacement algorithms are also needed when
a miss event occurs. Please refer to the text for more information if more interest.

12


	1 Diversity of I/O devices
	2 Operating system design issues
	2.1 Generality
	2.2 Efficiency

	3 I/O buffering
	3.1 Single buffer
	3.2 Double buffer
	3.3 Circular buffer

	4 Disk Scheduling
	4.1 Disk performance parameters
	4.2 Disk scheduling policies
	4.2.1 FIFO
	4.2.2 Priority-Based
	4.2.3 Shortest Service Time First
	4.2.4 SCAN
	4.2.5 C-SCAN


	5 Disk cache

