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Thread

1 Introduction

The characteristics of processes we have discussed so far may fall into two categories:

• Resource ownership From time to time, processes may be allocated control or owner-
ship of various resources, including main memory, I/O devices, and files. The operating
system may provide protection facilities to prevent illegal access to resources by non-
owners.

• Scheduling/execution This aspect actually relates to the occupation of the processor,
which is considered as a special resource. Every process has an execution path, and at
any moment is associated with a state (Running, Ready, etc.). A process is the entity
that is scheduled and dispatched by the operating system.

Why is the processor considered as a special resource? In my personal opinion, the first aspect
involves the issues decided by the snapshots of a process, which may be thought static, while
the second pays attention to the dynamic behavior of a process.

These two issues are taken apart not due to theoretical discussion purposes. Actually this
point of view has been embodied in all kinds of realistic systems. In modern operating sys-
tems, the unit of dispatching is usually referred to as a thread or lightweight process. And
the unit of resource ownership is still a process.

2 Multithreading

2.1 Concepts and examples

Almost all modern operating systems support the concept of thread by allowing multiple
threads in a single process, which is referred to as multithreading, while the traditional ap-
proach of a single thread of execution per process, where the concept of thread is not embod-
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ied at all, is referred to as single-threading. These two approaches are depicted in Figure 1,
in which a box represents a process and a downward curve a thread. As Figure 1 shows

• MS-DOS supports a single user process and a single thread.

• Some traditional UNIX systems are multiprogramming systems, thus support multiple
user processes but only one execution path is allowed for each process.

• A Java Virtual Machine (JVM) is an example of a system of one process with multiple
threads.

• Most modern operating systems, such as Windows 2000, Solaris, Linux, and OS/2, sup-
port multiple processes with multiple threads per process.

The last category is the concern of this section.
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Figure 1: Threads and processes

2.2 Process model with consideration of threads

In a multithreaded environment, a process, as the unit of resource ownership and protection,
is associated with:

• A virtual address space that holds the process image.
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• Protected access to I/O devices, files, and other resources that are owned by other pro-
cesses.

A thread otherwise has:

• A thread execution state.

• A saved thread context when not running. A simple way to view a thread is as an in-
dependent program counter within a process, indicating the position of the instruction
that the thread is working on.

• a stack tracing the execution path.

• some space for local variables.

Figure 2 illustrates the distinction between single-threaded process model and multithreaded
process model. As we stated before, a process image includes its PCB, user address space for

Í·²¹´»óÌ¸®»¿¼»¼
Ð®±½» Ó±¼»´

Ð®±½»
Ý±²¬®±´
Þ´±½µ

Ë»®
ß¼¼®»
Í°¿½»

Ë»®
Í¬¿½µ

Õ»®²»´
Í¬¿½µ

Ó«´¬·¬¸®»¿¼»¼
Ð®±½» Ó±¼»´

Ð®±½»
Ý±²¬®±´
Þ´±½µ

Ë»®
ß¼¼®»
Í°¿½»

Ë»®
Í¬¿½µ

Õ»®²»´
Í¬¿½µ

Ë»®
Í¬¿½µ

Õ»®²»´
Í¬¿½µ

Ë»®
Í¬¿½µ

Õ»®²»´
Í¬¿½µ

Ì¸®»¿¼
Ý±²¬®±´
Þ´±½µ

Ì¸®»¿¼ Ì¸®»¿¼ Ì¸®»¿¼

Ì¸®»¿¼
Ý±²¬®±´
Þ´±½µ

Ì¸®»¿¼
Ý±²¬®±´
Þ´±½µ

Figure 2: Single threaded and multithreaded process models

global variables and code, as well as user and kernel stacks tracing procedural invocations. In
a multi-threading environment, there is still a single PCB and user address space associated
with each single process, but multiple user stacks and kernel stacks are needed for multiple
threads. A separate control block for each thread is also necessary to record the execution
context, priority, and state information. Thus all threads within a process share the state of
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the process, reside in the same address space, and have access to the same collection of data.
If the value of a global variable is altered by one thread, other threads can see the result by
visiting the same variable.

2.3 Benefits of multi-threading

The introduction of thread is not to seek a perfection of a theoretical model, but does bring
benefits:

• It takes far less time to create a new process in an existing process than to create a brand-
new process.

• It takes less time to terminate a thread.

• It takes less time to do control switching between two threads within a same process
than process switching.

• Threads make it easier to communicate between different execution traces. Sharing the
same user address space enables the communication naturally but process communica-
tion demands special supports from the operating system.

Thus if there is a function that should be implemented as a set of related units of execution,
it is far more efficient to do so as a collection of threads rather than a collection of separate
processes.

What’s more, many systems or facilities in the real world are in nature concurrent systems.
That is different parts of a system run at the same time. But due to the limitation of early
computer systems, the parallel structures are forced to be implemented in a serial fashion.
The availability of threads provides more bullets for the computers to reflect the real world in
a straightforward way.

2.4 Application of threads

Take web servers as an example. Let’s consider the way how the client requests are processed
and responded by a web server in terms of the model of the execution traces inside it. With the
development of technologies, the following models have been practised in turn by a variety
of web servers:

• Blocked model
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The simplest way is to set up only one process, which processes one user request at a
time. Thus if another request arrives over the Internet while the process is still busy
processing and not listening, the new request will simply not be received. This blocked
model is similar as the early batch-processing operating systems, where a job will not
be processed until all previous ones have been finished.

• Multiplexing model

To solve the problem in the blocked model, a single process may respond to multiple
requests in a time-sharing fashion like a time-sharing operating system. However if the
work-load of the server is heavy, then each single request will have to wait a long time
until completely served.

• Forking model

Since the requests come in independently, a natural way to respond is to create a new
process for each newly coming request. This is usually done by the invocation of the
UNIX routine fork() , so this model is called forking model. But this model also has
its problems. Each process created requires its own address space but main memory
is a limited resource. Though the appearance of virtual memory technique allows the
suspension of processes, but a process has to be in main memory to be executed. The
swapping out and in consumes much time. And the creation of process also takes much
time, so the performance of such a web server may be greatly impaired.

• Process-pool model

This model is an improvement to the forking model. Instead of creating a process when
a request arrives and terminating it when the process finishes, a set of processes may
be created in the first place when the web server is launched at the very beginning.
These processes are managed as a process pool and whenever a process is needed for
processing a request, the pool will allocate a process for the task. When the processing
is finished, the process is returned to the pool for future requests. This model to much
extent avoids the overhead of process creation and termination.

• Process-pool with multithreading

The story has not ended yet. Limited resource of the computer system cannot afford a
number of processes in the pool. With the introduction of multithreading, the process-
pool model may be revised to let a single process responsible for multiple requests (e.g.
from a same user) with one thread for each request. In this way, the number of processes
needed in the pool may be reduced significantly. The sharing of user address space
among the threads also fits well the relevance between the requests.

From this abstract example, we can see how processes and threads work together to solve real
problems.
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3 Thread functionality

3.1 Thread states

Although a thread embodies the dynamic behavior of processes, and is the unit of scheduling
and dispatching, there are however several actions that affect all of the threads in a process
and the operating system must manage at the process level.

• Suspension means swapping the process image out of main memory. Since all threads
share the same address space, all the threads must enter a Suspend state at the same
time.

• Termination of a process terminates all threads within that process. For example, if a
Java thread calls System.exit(0) , then the JVM process will exit and all the threads
will be terminated.

Thus the key states for a thread are Running, Ready, and Blocked. Accordingly there are
events that cause a thread state transition:

• Spawn

When a new process is created, typically a thread for this process is also spawned. Later
on, other threads may be spawned within the same address space. Every new thread is
provided with its own register context and stack space and placed on the ready queue.

• Block

When a thread needs to wait for an event, it will be blocked and its thread context be
saved in its thread control block. The processor may then schedule another thread to
run.

• Unblock

Similar to the case regarding process, when a desired event occurs, the waiting thread
will then be unblocked and moved to the ready queue.

• Finish

When a thread completes, the space allocated for it will be deallocated.

Note that with multithreading the Blocked state of a process makes no more sense. While
a thread is blocked, another thread in the same process may still run on the processor. For
example, Figure 3 shows a program that performs two remote procedure call (RPC) to two
different hosts to obtain a combined result.
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Figure 3: Remote procedure call using threads

An RPC is similar to a regular procedure call except that the RPC caller and the RPC callee
may reside on different hosts. The transfer of parameters and results involves data trans-
mission over the network instead merely local stack push and pop operations. The RPC
mechanism is illustrated in Figure 4.

In a single-threaded system, the two requests have to be done in sequence, while in a multi-
threaded environment, each request may be made by separate threads. Although on a unipro-
cessor system at any moment only one thread may be running, and the requests still have to
be generated sequentially, the process however waits concurrently for the two replies.
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Figure 4: Remote procedure call mechanism

3.2 Thread synchronization

Since threads in a processor share the same address space, the result of a thread’s operation
is visible to other threads. This enables the communication between threads, but may cause
problems as well. The issues raised here, concurrency and synchronization, will be discussed
later.

4 User-level and kernel-level threads

We move on to consider the implementation issues of threads. There are two common ways
to support threads: user-level threads and kernel-level threads. Figure 5 (a), (b), and (c)
respectively show the two approaches and their combination.

4.1 User-level threads

In this approach, all of the work of thread management is done by the user application, and
the operating system kernel is not aware of the existence of threads. Typically a thread library
is available providing routines for manipulating threads (creating, terminating, scheduling,
and saving and restoring thread context) and communication between threads as well. JVM
implementations on Windows platform fall into this category.

Same as we have said, when a user process is created, a single thread is spawned and begins
running in the process space. This thread may spawn a new thread some time in the same
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Figure 5: User-level and kernel-level threads

process by invoking the spawn utility in the threads library. The threads library creates a data
structure for the new thread and then dispatch control to one of the threads in the currently
running process. When the control switches between individual threads and the library, the
thread context is also saved or restored accordingly.

The above activities all happen within the user address space. The kernel has no idea of these
and always schedule the process as a unit and assign a single execution state to it. But how
the thread state transition and process state transition work together consistently? Figure 6
gives an example. Suppose process B is executing in thread 2; the state of the process and the
two threads are shown in Figure 6 (a). Now let’s see what will happen in the following three
occasions:

1. Thread 2 makes a system call that blocks process B, e.g. an I/O call. This causes control
to transfer to the kernel. The kernel then starts the I/O operation, places process B in
the Blocked state, and switches control to another process. Meanwhile the information
the threads maintained by the threads library remains unchanged, so thread 2 is still
perceived as running though it is not. The new snapshot is illustrated in Figure 6 (b).

2. A timeout event occurs. The kernel determines that process B has exhausted its time
slice, so places it in the Ready state and dispatches another process. Similar to the first
case, the thread states are still the same.

3. Thread 2 has reached a point where it has to wait until thread 1 has performed a
specific action. Thus thread 2 enters a Blocked state and thread 1 becomes active and
begins to run. The process itself remains in the Running state.
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Figure 6: Examples of the relationships between user-level thread states and process states

4.2 Kernel-level threads

With a kernel-level thread implementation, all of the thread management work is done by
the kernel. The operating system may also provides an application programming interface
(API) to the user application, similar to the above threads library, but there is no thread man-
agement code in user address space. The examples include Windows 2000, Linux, and some
implementation of JVM on Solaris.

Figure 5 (b) depicts this approach. The kernel maintains context information for every process
and for individual threads within processes. Scheduling by the kernel is done on a thread
basis.

4.3 Comparison between user-level and kernel-level threads

Compared with the kernel-level implementation, The user-level one has the following advan-
tages:

1. No mode switching
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Thread switching does not require mode switching, whose overhead is huge. The
threads library works in the user address and there is no need to switch to the ker-
nel mode. As described in the textbook, some experiments have shown that there may
be an order of magnitude or more of difference between user-level threads and kernel
threads regarding the time needed for various thread operations.

2. Customizable thread scheduling

Thread scheduling can be tailored according to the nature of the application so that
better performance may be achieved.

3. System independent

User-level implementation may be easily ported to other platforms since the threads
library is a set of application-level utilities.

On the other side of the story, user-level threads also possess explicit disadvantages:

1. Process-level blocking

A blocking system call made by a thread in a process will cause all the threads in the
process to be blocked. The textbook proposed two solutions to solve this problem, but
seems useless.

2. Undistributable threads

In a multi-processor system, the kernel assigns one process to only one processor at a
time. Thus the multiple threads in a single process have no chance to run simultane-
ously.

Obviously the kernel-level threads do not have the above problems, but thread switching
causes mode switching and may greatly impair the performance.

Thus some systems tried to combine the two approaches together, e.g. Solaris and some good
results have been achieved in this direction.
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