
CSc31800: Internet Programming, CS-CCNY, Spring 2004 Jinzhong Niu May 9, 2004

JSPs1

As we know, servlets, replacing the traditional CGI technology, can do computation and gener-
ate dynamic contents during run-time. However those many out.println(), used to produce
HTML code, make coding a servlet tedious and awkward. JavaServer Pages technology was
introduced in this situation to bring simplicity while retaining the capability of customizing
web pages dynamically. A simple example have been introduced before to show this approach.

1 Using JSP

Basically, JSPs are HTML files with embedded Java servlet code. Each block of servlet code
is surrounded by a leading <% tag and a closing %> tag. That’s HTML code presents the static
part while servlet code is in charge of customization. The following gives an example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html><head><title>Hello from a JSP</title></head>

<body>

<p>Time on our server is <%= new java.util.Date() %></p>

<h1>Hello from a JSP</h1>

<p>The rest of the actual HTML page would be here...</p>

</body>

</html>

JSPs however are not limited to the above trivial computation. Similar to servlets, they can do
much more complicated work based on data submitted by the client. To make the manipulation
convenient, a scriptlet can use a number of predefined variables. The six most frequently used
variables are:

HttpServletRequest request

The servlet request.

HttpServletResponse response

The servlet response.
1This note contains materials from Java Servlet Programming, 2nd Edition, O’Reilly.

1

javax.servlet.jsp.JspWriter out

The output writer, used like a PrintWriter but it has different buffering characteristics.

The package javax.servlet.jsp is a part of Java servlet API, containing classes and
interfaces relating to JSP support.

HttpSession session

The user’s session.

ServletContext application

The web application.

javax.servlet.jsp.PageContext pageContext

An object primarily used to abstract the implementation of the server but sometimes
used directly to share variables between JSP pages and supporting beans and tags.

The following gives an example showing how some of the above variables are used.

<HTML>

<HEAD><TITLE>Hello</TITLE></HEAD>

<BODY>

<H1>

<%

if (request.getParameter("name") == null) {

out.println("Hello World");

}

else {

out.println("Hello, " + request.getParameter("name"));

}

%>

</H1>

</BODY>

</HTML>

If you have successfully installed Tomcat on your system, simply save the above page in
hello.jsp and place it under $CATALINA_HOME/webapps/ROOT. Then visit

http://host/hello.jsp?name=Jinzhong

you will see the page as shown in Figure 1.

Systematically speaking, JSPs may include servlet code in three formats: Expressions, Decla-
rations, and Scriptlets.

A JSP expression begins with <%= and ends with %>. Any Java expression between the two
tags is evaluated, the result is converted to a String, and the text is included directly in the

2

Figure 1: Saying “Hello” with JSP

page. This technique eliminates the clutter of an out.println() call. For example, <%= foo

%> includes the value of the foo variable.

A declaration begins with <%! and ends with %>. In between the tags, you can include any
servlet code that should be placed outside the servlet’s service method. You may declare
static or instance variables or define new methods. The following example demonstrates with
a JSP page that uses a declaration to define the getName() method and an expression to print
it. The comment at the top of the file shows that JSP comments are surrounded by <%-- --%>
tags.

<%-- hello2.jsp --%>

<HTML>

<HEAD><TITLE>Hello</TITLE></HEAD>

<BODY>

<H1>

Hello, <%= getName(request) %>

</H1>

</BODY>

</HTML>

<%!

private static final String DEFAULT_NAME = "World";

private String getName(HttpServletRequest req) {

String name = req.getParameter("name");

if (name == null)

return DEFAULT_NAME;

else

return name;

}

%>

This JSP behaves the same as the above hello.jsp, which is otherwise an excellent example
of scriptlets, meaning blocks of code that may be inserted into service method to produce
HTML code.

3

2 Behind the Scenes

How does JSP work? Behind the scenes, the server automatically converts a JSP into a servlet,
and then creates, compiles, loads, and runs it to generate the page’s content. The whole process
is illustrated in Figure 2. To give you a sense of the resulted servlet, the following is the one

Figure 2: Converting JSP to servlet

generated automatically for hello.jsp:

import javax.servlet.*;

import javax.servlet.http.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.beans.*;

import java.io.*;

import java.util.*;

import org.apache.jasper.runtime.*;

import org.apache.jasper.*;

public class _0002fhello_00031_0002ejsphello_jsp_0 extends HttpJspBase {

private static boolean _jspx_inited = false;

public _0002fhello_00031_0002ejsphello_jsp_0() { }

public final void _jspx_init() throws JasperException { }

public void _jspService(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

JspFactory _jspxFactory = null;

PageContext pageContext = null;

HttpSession session = null;

4

ServletContext application = null;

ServletConfig config = null;

JspWriter out = null;

Object page = this;

String _value = null;

try {

if (_jspx_inited == false) {

_jspx_init();

_jspx_inited = true;

}

_jspxFactory = JspFactory.getDefaultFactory();

response.setContentType("text/html;charset=8859_1");

pageContext = _jspxFactory.getPageContext(this, request, response,

"", true, 8192, true);

application = pageContext.getServletContext();

config = pageContext.getServletConfig();

session = pageContext.getSession();

out = pageContext.getOut();

// HTML // begin [file="C:\\hello.jsp";from=(0,0);to=(4,0)]

out.write("<HTML>\r\n<HEAD><TITLE>Hello</TITLE></HEAD>\r\n<BODY>");

out.write("\r\n<H1>\r\n");

// end

// begin [file="C:\\hello.jsp";from=(4,2);to=(11,0)]

if (request.getParameter("name") == null) {

out.println("Hello World");

}

else {

out.println("Hello, " + request.getParameter("name"));

}

// end

// HTML // begin [file="C:\\hello.jsp";from=(11,2);to=(15,0)]

out.write("\r\n</H1>\r\n</BODY></HTML>\r\n\r\n");

// end

} catch (Exception ex) {

if (out.getBufferSize() != 0)

out.clearBuffer();

pageContext.handlePageException(ex);

} finally {

out.flush();

_jspxFactory.releasePageContext(pageContext);

}

}

}

The conversion causes the so-called first-person penalty since it always happens at the first

5

time when the JSP is accessed and may cause a significant delay of response. Subsequent
requests should be as fast as ever because the server can reuse the servlet in memory.

You can avoid the first-person penalty by pre-compiling your JSPs. This can be done manually
by making a request to each JSP page passing a query string of jsp precompile="true". The
request causes the server to compile the JSPs, but the special query string tells the server not
to bother passing the request through to the JSP for handling.

3 Directives

Besides servlet code, JSPs can use directives to impose some control upon the request manip-
ulation, which is similar to server directive in the traditional CGI specification.

Directives can be used to tell the generated servlet to set a content type, import a package ,
control its output buffering and session management, extend a different superclass, and give
special handling to errors.

The directive syntax requires a directive name along with an attribute name/value pair, all
surrounded by <%@ %> tags. The quotes around the attribute value are mandatory:

<%@ directiveName attribName="attribValue" %>

The page directive allows the JSP to control the generated servlet through the setting of special
attributes including:

contentType

Specifies the content type of the generated page. For example:

<%@ page contentType="text/plain" %>

The default content type is text/html; charset=8859 1.

import

Specifies a list of classes and packages the generated servlet should import. Multiple
classes can be given in a comma-separated list. For example:

<%@ page import="java.io.*,java.util.Hashtable" %>

The implicit include list is:

java.lang.*,javax.servlet.*,javax.servlet.http.*,javax.servlet.jsp.*

More directives can be found at http://develop.levity.com/ref/jsp-directives.xtp.

6

http://develop.levity.com/ref/jsp-directives.xtp

4 JSP and JavaBeans

One of the most interesting and powerful ways to use JSPs is in cooperation with JavaBeans
components.

4.1 What are JavaBeans?

JavaBeans is a component technology, comparable to Microsoft’s ActiveX. JavaBeans com-
ponents are reusable Java classes whose methods and variables follow specific naming con-
ventions to give them added abilities. Those conventions make it possible for JavaBeans
to be manipulated in a visual builder tool and composed together into applications based
on event-driven model and other design patterns. For example, the following gives a Java
bean called MagicBean, in which a variable magic is defined. To comply with JavaBeans
specification, MagicBean must include two methods for the variable to be read and written,
setMagic/getMagic.

/*

A simple bean that contains a single "magic" string.

*/

public class MagicBean {

private String magic;

public MagicBean(String string) {

magic = string;

}

public MagicBean() {

magic = "Woo Hoo"; // default magic string

}

public String getMagic() {

return(magic);

}

public void setMagic(String magic) {

this.magic = magic;

}

}

You may go to http://java.sun.com/ for more details about JavaBeans technology.

4.2 Embedding a Bean

Beans are embedded in a JSP page using the <jsp:useBean> action. It has the following
syntax (case sensitive, and the quotes are mandatory):

7

http://java.sun.com/

<jsp:useBean id="name" scope="page|request|session|application"

class="className" type="typeName">

</jsp:useBean>

You can set the following attributes of the <jsp:useBean> action:

id

Specifies the name of the bean. This is the key under which the bean is saved if its scope
extends beyond the page. If a bean instance saved under this name already exists in the
given scope, that instance is used with this page. Otherwise a new bean is created. For
example:

id="userPreferences"

scope

Specifies the scope of the bean’s visibility. The value must be page, request, session,
or application. If page, the variable is created essentially as an instance variable; if
request, the variable is stored as a request attribute; if session, the bean is stored in
the user’s session; and if application, the bean is stored in the servlet context. For
example:

scope="session"

The default value is page.

class

Specifies the class name of the bean. This is used when initially constructing the bean.
The class name must be fully qualified. For example:

class="com.company.tracking.UserPreferencesImpl"

The class attribute is not necessary if the bean already exists in the current scope,
but there must still be a type attribute to allow the system to cast the object to the
proper type. If there’s a problem constructing the given class, the JSP page throws an
InstantiationException.

type

Specifies the type of the bean as it should be held by the system, used for casting when
the object is retrieved from the request, session, or context. The type value should be
the fully qualified name of a superclass or an interface of the actual class. For example:

type="com.company.tracking.UserPreferences"

8

If unspecified, the value defaults to be the same as the class attribute. If the type does
not match the object’s true type, the JSP page throws a ClassCastException.

beanName

The class attribute may be replaced by a beanName attribute. The difference between
the two is that beanName uses Beans.instantiate() to create the bean instance, which
looks for a serialized version of the bean (a .ser file) before creating an instance from
scratch. This allows the use of preconfigured beans. See the Beans.instantiate()
Javadoc documentation for more information. For example:

beanName="com.company.tracking.UserPreferencesImpl"

The body of the <jsp:useBean> element – everything between the opening <jsp:useBean>
and the closing </jsp:useBean> – is interpreted after the bean’s creation. If the bean is
not created (because an existing instance was found in the given scope) then the body
is ignored. To demonstrate:

<jsp:useBean id="prefs" class="com.company.tracking.UserPreferencesImpl">

If you see this we must have created a new bean! </jsp:useBean> If no body is needed,
the XML shorthand for an empty tag /> can be used:

<jsp:useBean id="prefs" class="com.company.tracking.UserPreferencesImpl" />

4.3 Controlling Bean Properties

The <jsp:setProperty> action provides the ability for request parameters to automatically
(via introspection) set properties on the beans embedded within a page. This gives beans
automatic access to the parameters of the request without having to call getParameter().
This feature can be used in several ways. First :

<jsp:setProperty name="beanName" property="*" />

This says that any request parameter with the same name and type as a property on the
given bean should be used to set that property on the bean. For example, if a bean has a
setSize(int size) method and the request has a parameter size with a value of 12, the
server will automatically call bean.setSize(12) at the beginning of the request handling. If
the parameter value can’t be converted to the proper type, the parameter is ignored. (Note
that an empty string parameter value is treated as if the parameter does not exist and will not
assign an empty string value to a String property.)

Notice that the action uses the XML shorthand for an empty tag. This is very important. The
JSP specification requires all JSP actions to be well-formed XML, even when placed in HTML
files. Here’s the second <jsp:setProperty> usage:

9

<jsp:setProperty name="beanName" property="propertyName" />

This says that the given property should be set, if there’s a request parameter with the same
name and type. For example, to set the size property but no other property, use this action:

<jsp:setProperty name="prefs" property="size" />

Here’s a third <jsp:setProperty> usage:

<jsp:setProperty name="beanName" property="propertyName" param="paramName" />

This says that the given property should be set, if there’s a request parameter with the given
name and the same type. This lets a parameter with one name set a property with another
name. For example, to set the size property from the fontSize parameter:

<jsp:setProperty name="prefs" property="size" param="fontSize" />

This is the final usage:

<jsp:setProperty name="beanName" property="propertyName" value="constant" />

This says that the given property should be set to the given value, which will be converted to
the appropriate type if necessary. For example, to set the default size to 18 with a parameter
override:

<jsp:setProperty name="prefs" property="size" value="18" />

<jsp:setProperty name="prefs" property="size" param="fontSize" />

For advanced users, the value attribute does not need to be a constant; it can be specified
using an expression with what’s called a request-time attribute expression. For example, to
ensure the size never drops below 6:

<jsp:setProperty name="prefs" property="size" param="fontSize" />

<jsp:setProperty name="prefs" property="size"

value="<%= Math.max(6, prefs.getSize()) %>" />

Finally, the <jsp:getProperty> action provides a mechanism for retrieving property values
without using Java code in the page. Its usage looks much like that of <jsp:setProperty>:

<jsp:getProperty name="beanName" property="propertyName" />

This says to include at this location the value of the given property on the given bean. It’s
longer to type than an expression but eliminates the need to place Java code in the page.
Whether to use <jsp:getProperty> or an expression is a matter of personal taste. Note
that <jsp:getProperty> embeds the property value directly, so if it contains characters that
HTML treats as special, that will cause problems.

10

4.4 Saying “Hello” Using a Bean

The following demonstrates the use of a JavaBeans component with a JSP page; it says “Hello”
with the help of a HelloBean.

<%-- hello.jsp --%>

<%@ page import="HelloBean" %>

<jsp:useBean id="hello" class="HelloBean">

<jsp:setProperty name="hello" property="*" />

</jsp:useBean>

<HTML>

<HEAD><TITLE>Hello</TITLE></HEAD>

<BODY>

<H1>

Hello, <jsp:getProperty name="hello" property="name" />

</H1>

</BODY>

</HTML>

As you can see, using a JavaBeans component with JavaServer Pages can reduce the amount
of code placed into the page. The HelloBean class contains the business logic for determining
a user’s name, while the JSP page acts only as a template.

The code for HelloBean is shown as follows. Its class file should be placed in the standard
directory for support classes (WEB-INF/classes).

public class HelloBean {

private String name = "World";

public void setName(String name) {

this.name = name;

}

public String getName() {

return name;

}

}

5 Includes and Forwards

Through a combination of directives and actions, JSP provides support for includes and for-
wards. There are two kinds of include, and one kind of forward.

The first include is an include directive:

11

<%@ include file="pathToFile" %>

This include occurs at translation time which means it happens during the creation of the
background servlet. All content from the external file is included as if it were typed into the
JSP page directly. For C programmers, this works like a #include. The file path is rooted at
the context root (so /index.jsp refers to the index.jsp for the current web application) and
the path may not extend outside the context root (don’t try ../../../otherContext). The
content within the file is typically a page fragment, not a full page, so you may want to use
the .inc or .jin file extension to indicate this. The following JSP page uses several include
directives to construct a page from a set of components (the components aren’t shown):

<%@ include file = "/header.html" %>

<%@ include file = "/nameCalculation.inc" %>

Hello, <%= name %>

<%@ include file = "/footer.html" %>

Where does the name variable come from? It’s created by the nameCalculation.inc file.
Because the included file’s content is included directly, there’s no separation of variable scope.

The second kind of include is a <jsp:include> action:

<jsp:include page="pathToDynamicResource" flush="true" />

This include occurs at request time. It’s not a raw include like the include directive; instead
the server executes the specified dynamic resource and includes its output into the content
sent to the client. Behind the scenes the <jsp:include> action generates code that calls the
RequestDispatcher’s include() method, and so the same usage rules apply for <jsp:include>
as apply for include() – the included page must be dynamic, cannot set the status code, and
cannot set any headers, and the path to the page is rooted at the context root. The flush

attribute is required and in JSP 1.1 must always be set to true. This indicates the response
buffer should be flushed before the include takes place. Given the capabilities of Servlet API
2.2, a value of false cannot be supported; it’s expected JSP 1.2 built on Servlet API 2.3 will
allow a value of false.

As an example, the following <jsp:include> action includes the content generated by a call
to the greeting.jsp page. The greeting.jsp page could look a lot like hello.jsp, except
you’d want to remove the surrounding HTML that makes hello.jsp a complete HTML page:

<jsp:include page="/greeting.jsp" />

The <jsp:include> directive can optionally take any number of <jsp:param> tags within its
body. These tags add request parameters to the include request. For example, the following
action passes the greeting a default name:

<jsp:include page="/greeting.jsp">

<jsp:param name="defaultName" value="New User" />

</jsp:include>

12

Finally, a JSP may forward a request using the <jsp:forward> action:

<jsp:forward page="pathToDynamicResource" />

The forward causes control of the request handling to be passed to the specified resource. As
with the <jsp:include> action it’s executed at request time and is built on the RequestDis-
patcher ’s forward() method. The forward() usage rules apply – at the time of the forward
all buffered output is cleared and if output has already been flushed, the system throws an
exception. The following action forwards the request to a special page if the user is not logged
in:

<% if (session.getAttribute("user") == null) { %>

<jsp:forward page="/login.jsp" />

<% } %>

The <jsp:forward> action accepts <jsp:param> tags as well.

13

	1 Using JSP
	2 Behind the Scenes
	3 Directives
	4 JSP and JavaBeans
	4.1 What are JavaBeans?
	4.2 Embedding a Bean
	4.3 Controlling Bean Properties
	4.4 Saying ``Hello" Using a Bean

	5 Includes and Forwards

