
CSc31800: Internet Programming, CS-CCNY, Spring 2004 Jinzhong Niu February 19, 2004

HTTP

1 Overview

HTTP is the most important protocol in the Internet and makes what the World Wide Web is
now possible.

HTTP is short for HyperText Transfer Protocol, which was brought forward by Tim Berners-Lee
and his colleagues at CERN (European High-Energy Particle Physics Laboratory) in 1989. To
enable collaboration between physicists and other researchers in high energy physics commu-
nity, they wrote a proposal and brought forward a document-sharing system. In the system,
three new technologies are incorporated: HTML (HyperText Markup Language) used to write
the web documents, HTTP to transmit the pages, and a web browser client program to receive
and interpret data and display results. This is still how the current world-wide web works.

Tim Berners-Lee’s idea was usually believed inspired by Xanadu Project. An article present-
ing the project’s main idea has been added to the reference section on our course web page.
You are required to read it.

In the TCP/IP context, as we mentioned before, there are 5 layers. HTTP is a protocol be-
longing to the topmost application layer and usually implemented based on socket service
provided by TCP protocol.

Like most network protocols, HTTP uses the client-server model: An HTTP client opens a
connection and sends a request message to an HTTP server; the server then returns a response
message, usually containing the resource that was requested. After delivering the response,
the server closes the connection (making HTTP a stateless protocol, i.e. not maintaining any
connection information between transactions). Typically, an HTTP server listens on port 80,
though it may use any port available.

2 Resources and URI

Everyone should have had web surfing experience so far. We typically use a graphical web
browser. And by either providing explicitly an address in the address field or clicking a

1

http://www.xanadu.net/

link in the current web page, we tells the browser to request the corresponding resource on
the server. We say resource instead of HTML page as we usually see because what we are
supposed to request could be anything: HTML pages, JPEG images, executable programs,
etc.. The resource may already be available on the server or be generated dynamically by the
server upon request.

The address either provided explicitly or hidden behind the link is called the Uniform Re-
source Identifier (URI) of the resource. Commonly we use the term, Uniform Resource Locator
(URL). Theoretically they are different. URI is more general. A URI could be a URL or a Uni-
form Resource Name (URN). The difference between URL and URN is that URNs are used for
identification, while URLs for locating or finding resources.

A URN identifies a resource or unit of information. It may identify, for example, intellectual
content, a particular presentation of intellectual content, or whatever a name assignment au-
thority determines is a distinctly namable entity. A URL identifies the location or a container
for an instance of a resource identified by a URN. The resource identified by a URN may
reside in one or more locations at any given time, may move, or may not be available at all.

A URL, e.g. http://www-cs.ccny.cuny.edu/˜jniu/index.html , typically consists of
three parts: Protocol, i.e. the http scheme; Host – the server to contact, www-cs.ccny.cuny.edu ;
and path – identifies document on that host /index.html .

According to RFC 1737 – Functional Requirements for Uniform Resource Names, the requirements
for URNs’ functional capabilities are as follows:

• Global scope: A URN is a name with global scope which does not imply a location. It
has the same meaning everywhere.

• Global uniqueness: The same URN will never be assigned to two different resources.

• Persistence: It is intended that the lifetime of a URN be permanent. That is, the URN
will be globally unique forever, and may well be used as a reference to a resource well
beyond the lifetime of the resource it identifies or of any naming authority involved in
the assignment of its name.

• Scalability: URNs can be assigned to any resource that might conceivably be available
on the network, for hundreds of years.

• Legacy support: The scheme must permit the support of existing legacy naming sys-
tems, insofar as they satisfy the other requirements described here. For example, ISBN
numbers, ISO public identifiers, and UPC product codes seem to satisfy the functional
requirements, and allow an embedding that satisfies the syntactic requirements de-
scribed here.

2

• Extensibility: Any scheme for URNs must permit future extensions to the scheme.

• Independence: It is solely the responsibility of a name issuing authority to determine
the conditions under which it will issue a name.

• Resolution: A URN will not impede resolution (translation into a URL, q.v.). To be
more specific, for URNs that have corresponding URLs, there must be some feasible
mechanism to translate a URN to a URL.

The relationship between URL and URN is similar to that between DNS names, e.g. www.cuny.edu ,
and IP addresses, e.g. 134.74.192.6 . For the present, we have a lot of URLs but few URNs.

2.1 Document Organization on Server

An HTTP server typically listens on port 80, gets HTTP requests, and sends back responses.
In the simplest case, the connection is closed at the end of a single request/response pair.

Usually, the HTTP server has a document root that points to the directory in the filesystem that
contains the documents to serve up. Suppose /etc/htdocs/ is the document root for an
HTTP server (htdocs is short for hyper-text documents). There are subdirectories a, b, and c :
(/etc/htdocs/a/ , /etc/htdocs/b/ , /etc/htdocs/c/), and each of those contains an
x.html file. The server gets request paths like /a/x.html and /b/x.html , and maps them
into the filesystem. That is the request path /a/x.html maps into the filesystem document
/etc/htdocs/a/x.html .

3 HTTP Requests and Responses

The format of the request and response messages are similar, and English-oriented. Both
kinds of messages consist of:

• an initial line,

• zero or more header lines,

• a blank line (i.e. a CRLFby itself), and

• an optional message body (e.g. a file, or query data, or query output).

If we put it in another way, the format of an HTTP message is:

• <initial line, different for request vs. response>

3

• Header1: value1

• Header2: value2

• Header3: value3

• <optional message body goes here, like file contents or query data; it can be many lines
long, or even binary data &*%@!ˆ@#>

Initial lines and headers should end in CRLF, though you should gracefully handle lines end-
ing in just LF. (More exactly, CRand LF here mean ASCII values 13 and 10, even though some
platforms may use different characters.)

3.1 HTTP Requests

The initial line is different for the request than for the response. A request line has three parts,
separated by spaces: a method name, the local path of the requested resource, and the version
of HTTP being used. A typical request line is:

GET /path/to/file/index.html HTTP/1.0

Note that

• GET is the most common HTTP method; it says ”give me this resource”. Other methods
include POST, HEAD, PUT, and DELETE (more on those later). Method names are
always uppercase.

• The path is the part of the URL after the host name.

• The HTTP version always takes the form HTTP/x.x , uppercase.

3.2 HTTP Responses

The initial response line, called the status line, also has three parts separated by spaces: the
HTTP version, a response status code that gives the result of the request, and an English
reason phrase describing the status code. Typical status lines are:

HTTP/1.0 200 OK

or

HTTP/1.0 404 Not Found

Notes:

4

• The HTTP version is in the same format as in the request line, HTTP/x.x .

• The status code is meant to be computer-readable; the reason phrase is meant to be
human-readable, and may vary.

• The status code is a three-digit integer, and the first digit identifies the general category
of response:

– 1xx indicates an informational message only.

– 2xx indicates success of some kind.

200 OK The request succeeded, and the resulting resource (e.g. file or script out-
put) is returned in the message body.

– 3xx redirects the client to another URL.

301 Moved Permanently The Location: field of the header gives the correct URL.

302 Moved Temporarily The server may suggest the correct URL using a Location:

in the header.

303 See Other (HTTP 1.1 only) The resource has moved to another URL (given by
the Location: response header), and should be automatically retrieved by the
client. This is often used by a CGI script to redirect the browser to an existing
file.

304 Not Modified The request had If-Modified-Since: field, but the docu-
ment has not been modified, so the client should use its cached copy.

– 4xx indicates an error on the client’s part.

401 = Unauthorized

403 = Forbidden The access to the specified resource is denied.

404 Not Found The requested resource doesn’t exist.

– 5xx indicates an error on the server’s part.

500 Server Error An unexpected server error. The most common cause is a server-
side script that has bad syntax, fails, or otherwise can’t run correctly.

503 Service Unavailable The server is temporarily not able to provide the service.
The header may contain a Retry-After: field to indicate when the client
might give it another shot.

A complete list of status codes with more details is in the HTTP specification – RFC 2616.

3.3 Header Lines

Header lines provide information about the request or response, or about the object sent in
the message body.

5

http://www.w3.org/Protocols/rfc2616/rfc2616.html

The header lines are in the usual text header format, which is: one line per header, of the form
Header-Name: value, ending with CRLF. It’s the same format used for email and news postings,
defined in RFC 822, section 3. Details about RFC 822 header lines:

• The header name is not case-sensitive (though the value may be).

• Any number of spaces or tabs may be between the ”:” and the value.

• Header lines beginning with space or tab are actually part of the previous header line,
folded into multiple lines for easy reading.

Thus, the following two headers are equivalent:

Header1: some-long-value-1a, some-long-value-1b

HEADER1: some-long-value-1a,

some-long-value-1b

HTTP 1.0 defines 16 headers, though none are required. HTTP 1.1 defines 46 headers, and
one (Host:) is required in requests. For Net-politeness, consider including these headers in
your requests:

• The From: header gives the email address of whoever’s making the request, or running
the program doing so. (This must be user-configurable, for privacy concerns.)

• The User-Agent: header identifies the program that’s making the request, in the form
Program-name/x.xx , where x.xx is the (mostly) alphanumeric version of the pro-
gram. For example, Netscape 3.0 sends the header User-agent: Mozilla/3.0Gold .

These headers help web masters troubleshoot problems. They also reveal information about
the user. When you decide which headers to include, you must balance the web masters’
logging needs against your users’ needs for privacy.

If you’re writing servers, consider including these headers in your responses:

• The Server: header is analogous to the User-Agent: header: it identifies the server
software in the form Program-name/x.xx . For example, one version of Apache re-
turns Server: Apache/1.3.6 .

• The Last-Modified: header gives the modification date of the resource that’s being
returned. It’s used in caching and other bandwidth-saving activities. And Greenwich
Mean Time is used, in the format

Last-Modified: Fri, 31 Dec 1999 23:59:59 GMT

6

http://www.w3.org/Protocols/rfc822/rfc822.txt

3.4 Message Body

An HTTP message may have a body of data sent after the header lines. In a response, this is
where the requested resource is returned to the client (the most common use of the message
body), or perhaps explanatory text if there’s an error. In a request, this is where user-entered
data or uploaded files are sent to the server.

If an HTTP message includes a body, there are usually header lines in the message that de-
scribe the body. In particular,

• The Content-Type header gives the MIME-type of the data in the body, such as text/html

or image/gif , see section 3.5.

• The Content-Length header gives the number of bytes in the body, i.e. the number
of bytes to read after the blank line following the header lines. Some HTTP/1.1 variants
get rid of this field, since it means the server cannot send any data until it knows how
many bytes there are.

3.5 MIME Types

MIME, short for Multipurpose Internet Mail Extensions, is a standard which predates HTTP for
identifying different types of data for inclusion in email messages.

Each MIME type is specified in the form of

content-type/sub-type [;aux-info]

For example,

text/html

text/plain

text/plain ; charset = us-ascii

multipart/mixed ; boundary = SpecialBoundaryString

application/pdf

application/postscript

audio/basic -- .au audio

image/jpeg

video/quicktime

When a resource is requested, the server determines its MIME type. It may use the file ex-
tension (.html , .pdf) or some other scheme. The client sees the type in the HTTP response
header, and so knows what to look for after the blank line. The date may be binary instead of
text, for example GIF, JPEG. The browser may use plug-ins to handle some MIME types.

7

3.6 HTTP Interaction Example

bash-2.03$ telnet www.cs.gc.cuny.edu 80

Trying 146.96.245.5...

Connected to www.cs.gc.cuny.edu.

Escape character is ’ˆ]’.

GET /index.html HTTP/1.0

HTTP/1.1 200 OK

Date: Wed, 18 Feb 2004 11:30:13 GMT

Server: Apache/2.0.44 (Unix)

Last-Modified: Mon, 03 Dec 2001 14:29:14 GMT

ETag: "de02-106-34700280"

Accept-Ranges: bytes

Content-Length: 262

Connection: close

Content-Type: text/html

<HTML>

<HEAD>

<META HTTP-EQUIV="refresh" content="0";

URL=http://web.gc.cuny.edu/ComputerScience">

</HEAD>

<BODY>

Click here to visit the website of CUNY Computer Science Ph.D. program.

</BODY>

</HTML>

Connection closed by foreign host.

8

	1 Overview
	2 Resources and URI
	2.1 Document Organization on Server

	3 HTTP Requests and Responses
	3.1 HTTP Requests
	3.2 HTTP Responses
	3.3 Header Lines
	3.4 Message Body
	3.5 MIME Types
	3.6 HTTP Interaction Example

