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Abstract

AUTOMATED AUCTION MECHANISM DESIGN WITH COMPETING

MARKETPLACES

by

JINZHONG NIU

Advisor: Professor Simon Parsons

Resource allocation is a major issue in multiple areas of computer science. Auctions are com-

monly used in optimizing resource allocation in these areas, since well designed auctions achieve

desirable economic outcomes including high allocative efficiency and fast response to supply and

demand changes.

This dissertation presents a grey-box approach to automated auction mechanism design us-

ing reinforcement learning and evolutionary computation methods. In contrast to the traditional

approaches that try to design complete auction mechanisms manually, which is tedious and error-

prone, the grey-box approach solves the problem through an automated search in a parameterized

space of auction mechanisms. This space is defined by a novel, parameterized structure for auction

mechanisms—a big white box—and a set of auction rules—each as a small black box—that can fit

into the structure. The grey-box approach uses reinforcement learning to explore the composition

of the structure, relates the performance of auction mechanisms to that of auction rules that form
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the mechanisms, and utilizes a Hall of Fame, a technique from evolutionary computation, to main-

tain viable auction mechanisms. The evaluation of auction mechanisms in the grey-box approach

is conducted through a new strategic game, called CAT, which allows multiple marketplaces to run

in parallel and compete to attract traders and make a profit. The CAT game helps to address the

imbalance between prior work in this field that studied isolated auctions and the actual competitive

situation that marketplaces face.

Experiments were carried out to examine the effectiveness of the grey-box approach. A com-

parison against the genetic algorithm approach showed that the grey-box approach was able to

produce mechanisms with significantly better overall performance. The best produced mecha-

nisms from the grey-box experiments were able to outperform both the standard mechanisms

which were used in evaluating sampled mechanisms during the grey-box search and carefully

hand-coded mechanisms which won tournaments based on the CAT game. These best mechanisms

also exhibited better performance than some existing mechanisms from the literature even when

the evaluation did not take place in the context of CAT games.
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Chapter 1
Introduction

Markets, as ‘an invisible hand’, have shown their effectiveness in matching supply and demand,

and allocating resources. Auctions provide opportunities of trading in marketplaces with strict

regulations governing the information available to traders in the marketplaces and the possible

actions they can take. They have been widely used in: structuring stock or futures exchanges,

selling collectible items, choosing offers of goods or services in government procurements, and

allocating computational resources in distributed systems. This is due to the fact that auctions,

when well designed [Klemperer, 2002], achieve desired economic outcomes like high allocative

efficiency. The creation of well-designed auctions in electronic commerce and computer-based

control presents a grand challenge for auction mechanism design.

Traditionally, marketplaces have only involved human interactions, whereas in ecommerce,

computer programs are widely used to make decisions on behalf of human traders in order to pro-

cess a much higher volume of information at a much faster speed. As a result, auction mechanism

design is no longer the exclusive domain of economists, but becomes an inter-disciplinary area

where fields including distributed artificial intelligence, theoretical computer science, economics,

and game theory meet. The design of competitive programs for algorithmic trading and electronic

1
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auction mechanisms that are both computationally feasible and economically efficient are, in par-

ticular, interesting to computer scientists.

1.1 Auction mechanisms in electronic commerce

In the Internet era, ecommerce has flourished and penetrated almost every corner of human life.

The greater amount of available information, the lower cost of communication, and other reduc-

tions in economic frictions makes the world ‘flatter’ than ever before [Greenwald et al., 2003;

Kephart, 2002].1

In financial markets, traders have continuously turned to automated algorithmic trading ser-

vices to deal with faster transactions and more complex market dynamics [Schwartz et al., 2006b].

According to an article from The Economist [The Economist, 2007], algorithmic trading accounted

for a third of all share trades in the United States in 2007, and the figure was estimated around 70%

in 2009 [Clark, 2010]. News and events usually affect market predictions and lead to high price

volatility, which in turn creates opportunities for arbitrage between markets. Unpredictable dy-

namics and complex linkages between markets make more robust, efficient market mechanisms

very desirable.

Online auction sites like eBay provide a way for consumers to buy a wide range of items, such

as common consumer electronic products and broken laser pointers.2 Since its establishment in

1995, eBay has expanded into dozens of countries and now makes billions of dollars each year.

The auction mechanisms used by eBay and other successful auction sites however are not perfect.

For example, an eBay auction typically finishes at a fixed time, allowing a bidder to bid only

1A relevant issue is that researchers commonly believe that electronic marketplaces help to promote competition
and increase allocative efficiency, but they often disagree on what changes brought by electronic marketplaces actually
led to these results [Li et al., 2006].

2According to www.wikipedia.org, the first item sold through eBay was a broken laser pointer for $14.83. The
buyer turned out to be a collector of these items.

www.wikipedia.org
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moments before the auction terminates and steal a deal from bidders who would offer higher prices

if given the chance [Greenwald, 2006]. This means a loss of revenue for both sellers and eBay.

Another issue, and one to which many researchers have paid much attention, is that eBay runs

many simultaneous sequential auctions [Gerding et al., 2007; Juda and Parkes, 2006]. In other

words, on eBay, hundreds, even thousands, of on-going auctions may sell the same kind of goods.

It is difficult for a potential buyer to select which auction to bid in. As a result, a successful bid in

one auction may be lower than a failed bid in another, leading to complaints from both sellers and

bidders, lower efficiency of the auctions and, in time, less revenue for eBay.

Electronic auctions have also been used to sell things that are not goods in a traditional sense.

For example in sponsored search, search engines like Google and Yahoo, in the role of publisher,

typically use auctions to select and show relevant advertisements along with search results on

their web sites. For each keyword-based search query, an ad auction is run to select bids from

advertisers. Each selected advertiser provides an ad to display in one of a certain number of ad

positions on the search result page. Better positions, which draw more attention from users, are

allotted to advertisers that bid higher. An advertiser usually pays on a per-click basis rather than on

the per-impression basis in the traditional media. Publishers have commonly used variants of an

auction mechanism called the generalized second-priced auction to determine winning bids from

advertisers and their ad positions. Although ad auctions generate many dollars in income each year

for these companies, the issue of how to analyze the current practices and design more effective

ad auction mechanisms is still a major concern. For instance, Lahaie and Pennock [Lahaie and

Pennock, 2007] compared the ranking rule used by Yahoo—based on the prices of bids—and that

used by Google—based on the expected profits of bids to Google, and concluded that neither rule

consistently outperforms the other.

All these scenarios from e-commerce challenge the designers of electronic auction mechanisms
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to design more desirable mechanisms.3 This opens up new lines of research in computer science,

such as inventing new algorithms for deciding the winning bid in auctions [Lehmann et al., 2006],

deciding how best to bid in multiple auctions [Schwartz et al., 2008], and how to build the software

infrastructure to run such auctions [Niu et al., 2008c].

1.2 Auction mechanisms in agent-based computing

The Internet also significantly boosts the adoption of distributed computing, in particular agent-

based computing. From an AI perspective, an agent is a computational entity that perceives and

acts upon its environment. It is usually assumed to be,

rational: it has some goal and carries out tasks that lead to the goal;

autonomous: it makes decisions based on its own knowledge instead of being controlled by an

external entity; and

adaptive: it adjusts its behavior dynamically over time, allowing it to respond to changes in its

environment.

An agent does not generally operate in isolation, and may interact with other agents directly

or indirectly via the environment. It is often natural and convenient to view a computer system as

a collection of multiple interacting agents, since this scheme grasps the very nature of what such

a system tries to model in the real world. As a result, the agent-based paradigm has grown and

flourished since 1980s [Wooldridge, 2001].

Taking a programming language perspective, this agent-based paradigm is an extension of

structured programming (SP) and object-oriented programming (OOP). SP increases the reusability

3Designers of trading agents and designers of electronic marketplaces usually face an arms race, and both sides
try to take advantage of the weaknesses on the other side and maximize their own profit.
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of data by declaring data structure types and the reusability of functionality by defining functions

and methods. OOP further encapsulates data and actions into objects and allows access to objects

only via interfaces, building highly cohesive classes and maintaining loose coupling between those

classes. However, both SP and OOP basically feature central control,4 which decides when and

what actions should be taken upon which piece of data. When the complexities of data and actions

increase, the complexity of the control strategy will increase exponentially, making the task of

system design formidably difficult. The agent-based paradigm, however, slices up the central

control, grants the individual agents local control upon their own behaviors, and relies on the

interactions between agents to achieve system goals. According to Maes [Maes, 1994], interactive

dynamics can build complexity from simple components.5 A system built in this bottom-up fashion

is more robust, more flexible, and more fault-tolerant than those organized in a pre-programmed,

top-down way.

Despite these advantages, the agent-based paradigm has its own difficulties, in particular those

in solving the following two problems:

1. how to design strategies for rational agents to maximize their individual utilities?

2. how to design an interaction mechanism so as to achieve desired global outcomes?

In different scenarios, these problems present a different level of challenge to a system designer.

When agents sit inside the boundary of the system, the first problem is not part of the designer’s

concern, meaning that the utility of each individual agent is either proportional to the global out-

comes or not a concern at all. In this case, the system designer only needs to come up with an

4Strictly speaking, both SP and OOP may have distributed control, depending upon the concrete implementation,
however distributed control is an inherent feature in the agent-based paradigm and is not so in SP or OOP.

5Maes [Maes, 1994] described three such scenarios that take place at different levels: (1) simple internal modules
that work together can lead to emergent functionality; (2) simple atomic capabilities together with feedback mecha-
nisms can produce complex behaviors; and (3) agents with simple behaviors can compose a social system that can
exhibit advanced structures or functionality.
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interaction mechanism that performs well with a fixed set of agent strategies. When the agents

themselves are not part of the system that is being constructed and their utilities do not have a

direct connection to the global outcomes, the interaction mechanism needs to perform well with

virtually any combination of agent strategies. The system designer must take care to avoid being

taken advantage of by the designer of individual agents and improve the interaction mechanism

when a flaw is found.6

A major tool for multi-agent system designers has been game theory (GT). GT provides a

framework for studying strategic, interacting individuals and solution concepts—usually various

equilibria—with the assumption of the rationality of individuals. GT thus helps to compare the

outcomes of an interaction mechanism to the optimal ones in theory, but it does not give a dy-

namic model that explains how to reach optimal outcomes, nor presents much guidance on how to

maximize global outcomes when some agents in the system are not as rational as presumed.

Auction mechanisms are an ideal candidate to provide this missing model.7 Auction mecha-

nisms are inherently interaction mechanisms between trading agents. The similarity between an

auction and a multi-agent system—both involving multiple self-interested individuals and con-

cerning certain global outcomes—makes it easy to map a problem in multi-agent systems to one

in auctions. This, together with the effectiveness of auction mechanisms in the real world, has

led to various market-based approaches to multi-agent coordination and resource allocation prob-

lems in cluster and grid computing environments [Horling and Lesser, 2005; Stöber and Neumann,

2008; Yeo and Buyya, 2006]. These approaches have demonstrated superior performance to those
6Therefore a research topic in this scenario is how to design a strategy-proof mechanism, with which the optimal

strategy for an agent is pre-determined and well-known.
7Other approaches to the problem of designing the interaction dynamics include multi-agent learning and biology-

inspired paradigms. Multi-agent learning (MAL) [Shoham et al., 2007; Tuyls and Parsons, 2007; Vohra and Wellman,
2007] explores how agents learn and adapt to achieve certain goals. MAL typically takes a game theoretic perspective,
modeling the situation as a game and using game theoretic solutions to analyze the interaction of agents with identical
or varying learning strategies [Hu and Wellman, 1999, 2003; Littman, 1994, 2001]. Biology-inspired paradigms stem
from the coordination among a swarm of homogeneous, little creatures like ants and bees that each follow a simple
scheme [Dorigo et al., 1996].
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pre-existing, non-market solutions, in terms of a combination of performance, scalability, and re-

liability. However, the market mechanisms adopted by these approaches are usually selected arbi-

trarily or based on certain heuristics. It is unknown whether these market mechanisms are optimal

solutions, or whether there are better options.

1.3 Auction mechanism design

Facing the challenges in both electronic commerce and market-based control, we need to solve the

following problem: Given a certain set of restrictions and desired outcomes, how can we design

a good, if not optimal, auction mechanism; and when the restrictions and goals alter, how can the

current mechanism be adjusted to handle the new scenario?

Traditionally, economists and mathematicians view auctions as games and have successfully

applied analytic methods from game theory to some kinds of auctions [Maskin and Riley, 1985],

for example the second-price sealed-bid auctions [Vickrey, 1961]. The high complexity of the

dynamics of some other auction types, especially double-sided auctions [Friedman, 1993], how-

ever makes it difficult to go further in this direction [Madhavan, 1992; Satterthwaite and Williams,

1993; Walsh et al., 2002].

As a result, researchers turned to experimental approaches. Starting in 1955, Smith [Smith,

1962] ran a series of experimental auctions involving human traders, which revealed many of

the properties of double auctions. Later researchers [Cliff and Bruten, 1997; Gode and Sunder,

1993a; Phelps et al., 2003; Rust et al., 1993; Tesauro and Das, 2001; Walsh et al., 2002], especially

computer scientists, deployed software agents to study auction mechanisms. With configurable

simulated environments, they were able to compare experimental results with theoretical predic-

tions and explore what affects the performance of auction mechanisms. The experimental work to

some extent helped to obtain more insights that are not readily available with the theoretical ap-
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proaches. However, experiments associated with manual investigation were still burdensome. The

problems with the approach are exactly those that dog any manual process—it is slow, error-prone,

and restricted to just a handful of individuals with the necessary skills and knowledge.

Automated mechanism design (AMD) aims to overcome the problems of the manual process

by designing auction mechanisms automatically. AMD considers design to be a search through

some space of possible mechanisms. For example, Cliff et al. [Cliff, 2001a, 2003] and Phelps et

al. [Phelps et al., 2002, 2003] explored the use of evolutionary algorithms to optimize different as-

pects of the continuous double auction. Around the same time, Conitzer and Sandholm [Conitzer

and Sandholm, 2003] were examining the complexity of building a mechanism that fitted a partic-

ular specification.

These different approaches were all problematic. The algorithms that Conitzer and Sandholm

considered dealt with exhaustive search, and naturally the complexity was exponential. In contrast,

the approaches that Cliff and Phelps pursued were computationally more appealing, but gave no

guarantee of success and were only searching tiny sections of the search space for the mechanisms

they considered. As a result, one might consider the work of Cliff and Phelps, and indeed the

work that is describe here, to be what Conitzer and Sandholm [Conitzer and Sandholm, 2007] call

“incremental” mechanism design, where one starts with an existing mechanism and incrementally

alters parts of it, aiming to iterate towards an optimal mechanism. Similar work, though work

that uses a different approach to searching the space of possible mechanisms has been carried

out by [Vorobeychik et al., 2007] and has been applied to several different mechanism design

problems [Schvartzman and Wellman, 2009a].

The problem with taking the automated approach to mechanism design further is how to make

it scale—though framing it as an incremental process is a good way to look at it, it does not provide

much practical guidance about how to proceed. In addition, all the previous work in this area has
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one common theme—it all studies single marketplaces or compares different auction mechanisms

of multiple marketplaces indirectly. Real marketplaces compete against each other just as traders

do in a single marketplace. This dissertation introduces a game that models the competition be-

tween marketplaces in a single market, and presents an approach to automated auction mechanism

design based on this game as well as a parameterized framework of auction mechanisms that can

be searched for a solution to the automated mechanism design problem.

This dissertation is organized as follows. Chapter 2 introduces the basic concepts in auction

theory. Chapter 3 gives an overview of experimental approaches to trading agent design and auc-

tion mechanism design. Chapter 4 considers a scenario involving competing marketplaces and

defines a game that makes it possible to evaluate auction mechanisms at these marketplaces in this

scenario. Chapter 5 presents an analysis of entries in the TAC Market Design Tournament, which

is based on this game and the insights obtained in the analysis finally lead to Chapter 6, which

proposes a novel grey-box approach to automated auction mechanism design and examines its ef-

fectiveness. Chapter 7 finally relates this work to prior work in the literature, discusses potential

future work beyond this dissertation, and concludes.

The work introduced in this dissertation (Chapter 4 to Chapter 6) was carried out either in-

dependently by myself or in collaboration with colleagues, and to the collaborated work covered

here, I am the main contributor. To be consistent in this dissertation, regardless of the nature of the

different pieces of this work, I will use the first person plural pronoun, ‘we’, to refer to the people

who carried out the work, and will only use ‘I’ when I refer to myself.

The first part of Chapter 4 and the white-box analysis in Chapter 5 was published in the AA-

MAS conference [Niu et al., 2008b] and the software that we built to run the market design game

was selected for demonstration in the conference [Niu et al., 2008c]. The black-box analysis in

Chapter 5 covers part of the paper that we published at the IAT conference [Niu et al., 2008a]. The
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two conference papers were later combined, revised, and further extended, and were published as

a AAMAS journal paper [Niu et al., 2010c]. The second part of Chapter 4 was presented in the

TADA workshop [Niu et al., 2007a]. Part of Chapter 6 was accepted by the AAMAS conference as

an extended abstract [Niu et al., 2010a], and later presented at the AMEC workshop as a regular pa-

per [Niu et al., 2010b]. A much extended version of this paper will appear in the ECRA journal [Niu

et al., 2012].



Chapter 2
Auctions

2.1 Auction types

A market is a set of arrangements by which buyers and sellers, collectively known as traders, are in

contact to exchange goods or services in physical or virtual marketplaces.8 Auctions associate mar-

ketplaces with strict regulations governing the information available to traders in the marketplaces

and the possible actions they can take.

One common kind of auction is the English auction, in which there is a single seller, and

multiple buyers compete by making increasing bids for the commodity (good or service) being

auctioned; the one who offers the highest price wins the right to purchase the commodity. Since

only one type of trader—buyers—makes offers in an English auction, the auction belongs to the

class of single-sided auctions. Another common single-sided auction is the Dutch auction, in

which the auctioneer initially calls out a high price and then gradually lowers it until one bidder

8The term ‘market’ in mainstream economics usually refers to a system, structure, or institution where the trading
of a certain type of goods or service may happen within or without a geographical or political boundary, for example,
the personal computer market in the United States, although it is often used to mean a concrete marketplace collo-
quially and in finance. One such example is to say ‘market clearing’, where the clearing occurs really in a single
marketplace to execute transactions.

11



CHAPTER 2. AUCTIONS 12

indicates they will accept that price.

Another class of single-sided auctions is the class of sealed-bid auctions, in which all buyers

submit a single bid and do so simultaneously, i.e., without observing the bids of the others or if the

others have bid. Two common sealed-bid auctions are the first-price auction and the second-price

auction or Vickrey auction [Vickrey, 1961]. In both types of sealed-bid auctions, the highest bidder

obtains the commodity. In the former, the highest bidder pays the price they bid, while in the latter,

they pay the second highest price that was bid.

These four single-sided auctions—English, Dutch, first-price sealed-bid, and Vickrey—are

commonly referred to as the standard auctions [Klemperer, 1999] and were the basis of much

early research on auctions [Rothkopf and Park, 2001; Wolfstetter, 1996].

In addition, there are double-sided auctions or DAs,9 in which both sellers and buyers make

offers, or shouts. The two most common forms of DA are clearing houses or CHs10 and continu-

ous double auctions or CDAs. In a CH, an auctioneer first collects bids—shouts from buyers—and

asks—shouts from sellers, and then clears the market at a price where the quantity of the commod-

ity supplied equals the quantity demanded. This type of market clearing guarantees that if a given

trader is involved in a transaction, all traders with more competitive offers are also involved.11 In a

CDA, a trader can make a shout and accept an offer from someone at any time. This design makes

a CDA able to process many transactions in a short time, but permits traders with less competitive

offers to make deals. Both kinds of DA are of practical importance, with, for example, CDA vari-

ants being widely used in real-world stock or trading exchanges including the New York Stock

Exchange (NYSE) and the Chicago Mercantile Exchange (CME).

9The terminology is not standardized, and sometimes these are called bid-ask auctions. Note that [Friedman,
1993] used the term “double auction” to refer to what we call a continuous double auction.

10These are sometimes called call markets or static double auctions.
11That is only intra-marginal traders are involved in transactions. The concepts of intra-marginal and the opposite

extra-marginal will be introduced in Section 2.2.
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In some auctions, traders can place shouts on combinations of items, or “packages”, rather

than just individual items. They are called combinatorial auctions [Cramton et al., 2006]. Com-

binatorial auctions present a host of new challenges as compared to traditional auctions, including

the so-called winner determination problem [Lehmann et al., 2006], which is how to efficiently

determine the allocation of the items among the traders once the bids have been submitted to the

auctioneer.

Traders, in some cases, are allowed to both sell and buy during an auction. Such traders are

called two-way traders, while those that only buy or only sell are called one-way traders.

The work that is presented in this dissertation involves only non-combinatorial DAs populated

by one-way traders.

2.2 Supply, demand and equilibrium

A central concern in studies of auction mechanisms are the supply and demand schedules in a

market. The quantity of a commodity that buyers are prepared to purchase at each possible price

is referred to as the demand, and the quantity of a commodity that sellers are prepared to sell at

each possible price is referred to as the supply. Thus if price is plotted as a function of quantity

following the convention in economics,12 the demand curve slopes downward and the supply curve

slopes upward, as shown in Figure 2.1a, since the greater the price of a commodity, the more sellers

are inclined to sell and the fewer buyers are willing to buy.13 Typically, there is some price at

12This graphical representation is usually attributed to Alfred Marshall, and has commonly followed in economics
ever since, although it is more intuitive to view quantity as a function of price, e.g., quantity on the vertical axis and
price on the horizontal axis, particularly so in the idealized scenario discussed in this dissertation where there is a
market of some kind of goods and trading in the market is independent from the prices and quantities in other markets.
In a real economy, price and quantity can have a causal relation each way. For example, when the price of some
market goes up, more sellers are willing to sell or are able to sell at no loss, which may lead traders from outside of
the market to join in for profit, providing additional supply and as a result pulling down the market price.

13The straight-line plots in Figure 2.1 are for illustration only. As a matter of fact, supply and demand curves usually
have varying slopes at different points, or have a stairwise shape if the goods or service of concern is indivisible.
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Figure 2.1: Typical supply and demand curves.

which the quantity demanded is equal to the quantity supplied. Graphically, this is the intersection

of the supply and demand curves. The price is called the equilibrium price, and the corresponding

quantity of commodity that is traded is called the equilibrium quantity. The equilibrium price and

equilibrium quantity are denoted as P0 and Q0 respectively in Figure 2.1a.

Each trader in an auction presumably has a limit price, called its private value, below which

sellers will not sell and above which buyers will not buy. Traders whose private value is no less

competitive than the equilibrium price are called intra-marginal whereas the rest of the traders

are called extra-marginal. The supply and demand of intra-marginal traders form the supply and

demand curves on the left hand side of the intersection point in Figure 2.1a whereas the supply and

demand of extra-marginal traders form the supply and demand curves on the right hand side of the

intersection point.

The private values of traders are not publicly known in most practical scenarios. What is known

instead are the prices that traders offer. Self-interested sellers will presumably offer higher prices

than their private values to make a profit and self-interested buyers tend to offer lower prices than
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their private values to save money. The prices and quantities that are offered also make a set

of supply and demand curves, called the apparent supply and demand curves, while the curves

based on traders’ private values are called the underlying supply and demand.14 Figure 2.1b shows

that the apparent supply curve shifts up compared to the underlying supply curve in Figure 2.1a,

while the apparent demand curve shifts down. Similar to traders, shouts that form the supply and

demand on the left hand side of the intersection point in Figure 2.1a are called intra-marginal and

those on the right hand side are called extra-marginal. In a CH, all intra-marginal shouts and only

the intra-marginal ones are matched when the market is cleared.

When traders are excessively greedy, the apparent supply and demand curves do not intersect

and thus no transactions can be made between sellers and buyers unless they compromise on their

profit levels and adjust their offered prices, a nice illustration of which can be found in [Zhan and

Friedman, 2007]. Sometimes even the underlying supply and demand curves do not intersect and

no transaction is possible unless some traders accept a loss.

As the private values of traders are typically unknown, it is usually assumed in the analysis

of a market that these values follow certain models. The simplest model is called the independent

private-value model [Klemperer, 1999; Parsons et al., 2011], according to which every trader in the

market knows the value of the goods being traded, and these values are all private and independent

of each other. In the real world, the private values are not fixed and may affect each other. A more

realistic model is called the pure common-value model [Wilson, 1969], which assumes that the

actual value of the goods is the same for everyone, but traders have different private information

about what that value actually is. In these cases, a trader will change her estimate of the value if

she learns another trader’s estimate, in contrast to the independent private-value case in which her

value would be unaffected by learning any other trader’s preferences or information. A general

model encompassing both the independent private-value model and the pure common-value model
14Following the terminology in [Cliff and Bruten, 1997].
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as special cases is the correlated-value model [Milgrom and Weber, 1982]. This model assumes

that each trader receives a private information signal, but allows each trader’s value to be a general

function of all the signals.15

In addition, in a real economy that comprises multiple markets that each involve a type of

goods, the values and prices of goods in one market may be influenced by many factors including,

for example, the prices of goods in related markets and government policies.

The work that is presented in this dissertation considers a rather simplified economy that in-

cludes a single market in which trading may occur in multiple competing marketplaces, traders are

entitled goods or money exogenously, and their values of goods follow the independent private-

value model. Even so, the scenario of multiple competing marketplaces takes one step further than

the typical scenarios in experimental economics that involve only a single marketplace.16

2.3 A typical time series of shouts

Auction mechanisms usually allow traders to place shouts and modify them over a certain period of

time. In a CDA, for instance, buyers and sellers not only ‘haggle’ on prices in a collective manner,

but they also face competition from opponents on the same side of the market. Thus buyers,

for example, are not only collectively trying to drive prices down, against the wishes of sellers,

15That is, trader i receives signal ti and would have value vi(t1, . . . , tn) if all traders’ signals were available to
her. In the independent private-value model, vi(t1, . . . , tn) is a function only of ti. In the pure common-value model,
vi(t1, . . . , tn) = v j(t1, . . . , tn) for all i and j.

16Note that the definitions and use of ‘market’ and ‘marketplace’ vary across fields. For example, in finance, a stock
exchange is often called a stock market, which is virtually a marketplace for stock trading, and all the stock exchanges
may be collectively called the global stock market. For another example, places where mobile apps are purchased are
named in many different ways, including, for instance, Windows Mobile Marketplace, Android Market, and iPhone
AppStore. It seems to be the case as well in academic publications. In particular, when the market of interest involves
only one marketplace, the two concepts are often used interchangeably, or ‘marketplace’ is not used at all, as in the
previous work that will be reviewed in Chapter 3. To avoid ambiguity in this dissertation, when multiple marketplaces
are involved, ‘marketplace’ is used to refer to one of the multiple places where trading may occur, and only the whole
system is called a ‘market’, however the use of ‘stock market’ and the like in finance will be followed as long as there
is no ambiguity.
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Figure 2.2: A typical time series of asks and bids.

but they are also individually trying to ensure that they, rather than other buyers, make profitable

trades. This leads to shouts becoming more and more competitive over time in a given auction.

Figure 2.2 shows a typical time series of shouts in a DA. Ask prices usually start high while bid

prices start low. Gradually, traders adjust their offered prices, or make new shouts, closing the gap

between standing asks and bids until the price of a bid surpasses that of an ask. Such an overlap

results in a transaction, shown as solid bars between the matched asks and bids in Figure 2.2.

In the auction depicted in Figure 2.2, newly placed bids (asks) do not have to beat the outstand-

ing bids (asks). However in some variants of the CDA, including the mechanism used by the NYSE,

new shouts must improve on existing ones. This requirement is commonly referred to as the NYSE

shout improvement rule [Easley and Ledyard, 1993].

In some real-world stock markets, including the NYSE and the NASDAQ markets, trades are

made through specialists or market makers, who buy or sell stock from their own inventory to keep
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the market liquid or to prevent rapid price changes.17 Each specialist is required to publish on a

regular and continuous basis both a bid quote, the highest price it will pay a trader to purchase

securities, and an ask quote, the lowest price it will accept from a trader to sell securities. The

specialist is obligated to stand ready to buy at the bid quote or sell at the ask quote up to a certain

number of shares. The range between the bid quote and the ask quote is called the bid-ask spread

(the bid quote is lower than the ask quote), and according to stock exchange regulations, the bid-

ask spread must be suitably small. If buy orders temporarily outpace sell orders, or conversely

if sell orders outpace buy orders, the specialist is required to use its own capital to minimize the

imbalance. This is done by buying or selling against the trend of the market until a price is reached

at which public supply and demand are once again in balance. Maintaining a bid-ask spread creates

risk for a specialist, but when well maintained, also brings huge profits, especially in an active

market [Bao, 2001].

Markets involving specialists that present quotes are called quote-driven markets. Another

class of markets are order-driven markets, in which all of the orders of buyers and sellers are

displayed. This contrasts with quote-driven markets where only the orders of market makers are

shown. An example of an order-driven market is the market formed by electronic communication

networks or ECNs. These are electronic systems connecting individual traders so that they can trade

directly between themselves without having to go through a middleman like a market maker. The

biggest advantage of this market type is its transparency. The drawback is that in an order-driven

market, there is no guarantee of order execution, meaning that a trader has no guarantee of making

a trade at a given price, while it is guaranteed in a quote-driven market. There are markets that

combine attributes from quote- and order-driven markets to form hybrid systems.

Our discussion above may give the impression that in real markets, trade orders are made
17Traditionally, in the NYSE, a given stock is traded through a single specialist, and in the NASDAQ, a stock may

be dealt with by multiple competing market makers. As the NYSE has gradually adopted electronic trading in recent
years, less and less stock has been traded through specialists.
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directly by the individuals who want to buy or sell stock. In practice, traders commonly place

orders through brokerage firms, which then manage the process of executing the orders through a

stock exchange.18

2.4 Performance metrics

Auctions with different rules and populated by different sets of traders may vary greatly in per-

formance. Popular performance measurements include, but are not limited to, allocative efficiency

and the coefficient of convergence. These are the measures that will be used in this dissertation.

2.4.1 Allocative efficiency

The allocative efficiency of an auction, denoted as Ea, is used to measure how much social welfare

is obtained through the auction. The theoretical or equilibrium profit, Pe, of an auction is

Pe = ∑
i
|vi− p0| (2.1)

for all intra-marginal traders, where p0 is the equilibrium price and vi is the private value of trader

i who can trade at p0 without a loss. The actual overall profit, Pa, of an auction is

Pa = ∑
j
|v j− p j| (2.2)

18http://www.sec.gov/investor/pubs/tradexec.htm gives a detailed illustration of how a trade order is
executed through a brokerage firm.

http://www.sec.gov/investor/pubs/tradexec.htm
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where p j is the transaction price of a trade completed by trader j and v j is the private value of

trader j, where j ranges over all traders who trade. Given these

Ea =
100Pa

Pe
(2.3)

Ea is thus a measure of the proportion of the theoretical profit that is achieved in practice.

2.4.2 Convergence coefficient

The convergence coefficient, denoted as α , was introduced by Smith [Smith, 1962] to measure

how far an active auction is away from the equilibrium point. It actually measures the relative root

mean squared (RMS) deviation of transaction prices from the equilibrium price

α =
100
p0

√
1
n

n

∑
i=1

(pi− p0)2 (2.4)

Since auctions with human traders often trade close to the equilibrium price, α is used as a way of

telling how closely artificial traders approach human trading performance [Cliff and Bruten, 1997].



Chapter 3
Experimental approaches

Traditionally, economists and mathematicians view auctions as games and have successfully ap-

plied analytic methods from game theory to some kinds of auctions [Maskin and Riley, 1985],

for instance Vickrey auctions [Vickrey, 1961]. However, as, for example Friedman [Friedman,

1993], has pointed out, DAs, particularly CDAs, are too complex to analyze in this way since at

every moment, a trader must compute expected utility-maximizing shouts based on the history of

shouts and transactions and the time remaining in the auction. This difficulty led researchers to

seek experimental approaches.

Researchers from economics have tended to run laboratory experiments with human subjects,

while computer scientists appeal to computer-based market simulations and use software agents to

automate trading. This chapter reviews the literature, focusing on how more and more sophisticated

trading strategies evolved, and how trading strategies and auction mechanisms were designed or

optimized in an automated fashion.

21
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3.1 Smith’s experiments

Researchers need certain market data to conduct analysis. As in other disciplines, researchers in

economics have long based their studies on field data, from large-scale on-going markets [Schwartz

et al., 2006b]. Field data has the most relevance to the real-world economy, but does not reveal

some important information, e.g., the private values of traders, and hence puts limits on what can

be achieved.

Smith [Smith, 1962] pioneered the research falling into the field of experimental economics

by running a series of experiments with human subjects. The human subjects in laboratory ex-

periments presumably inherit the same level of intelligence and incentive to make a profit as in

real markets, and the experiments are a series of CDA simulations that adopt mechanisms that are

similar to those in major stock and commodity exchanges and are described as follows:

• Every trader in the CDA markets is given a private value. The set of private values form the

underlying supply and demand curves.

• Each experiment was run over a sequence of trading days, or periods,19 the length of which

depends upon how many traders are involved but are typically several minutes in duration.

Different experiments may have different numbers of days.

• For simplicity, in most experiments, a trader is allowed to make a transaction for the ex-

change of only a single commodity in each day.

• Traders are free at any time to make a bid/ask or to accept a bid/ask.

• Once a transaction occurs, the transaction price, as well as the two traders’ private values,

are recorded.
19Smith used the term periods to refer to what are called days in this dissertation.
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• For each new day, a trader may make up to one transaction with the same private value

as before no matter whether she has made one in the previous day. Thus the supply and

demand curves each correspond to a single trading day. The experimental conditions of

supply and demand are held constant over several successive trading days in order to give

any equilibrating mechanisms an opportunity to establish an equilibrium over time, unless it

is the aim to study the effect of changing conditions on market behavior.

Smith’s experiments effectively revealed many of the properties of CDAs. Of particular interest

in this dissertation, he showed that in many different cases even a handful of traders can lead to high

allocative efficiency, and transaction prices can quickly converge to the theoretical equilibrium.

Smith’s experimental framework has been widely adopted by later studies and these properties

have been the basis and benchmark for much subsequent work.

3.2 Trading agents for double auctions

Experiments with human subjects are expensive in terms of time20 and money21 needed. Computer-

aided simulation is a less expensive alternative and can be repeated as many times as needed. How-

ever traders’ strategies in these simulations are not endogenously chosen as in auctions with human

traders, but are specified exogenously by the experiment designers, which raises the question of

whether the conclusions of this approach are trustworthy and applicable to practical situations.

Gode and Sunder [Gode and Sunder, 1993a] invented a naı̈ve trading strategy that always ran-

domly picks a profitable price to bid or ask. Surprisingly, their experiments with CDAs exhibited

high efficiency despite the lack of intelligence of the traders. Indeed, software agents, armed with

various learning algorithms and optimization techniques, have been shown capable of producing
20The experiments are run using a physical clock and need take into consideration the response time of human

traders.
21Usually human subjects are monetarily rewarded according to their performance.
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outcomes similar to those obtained with human subjects [Cliff and Bruten, 1997; Gode and Sunder,

1993a] and generating higher individual profits [Das et al., 2001].

3.2.1 Trading strategies

This section enumerates the common trading strategies for double auctions in the literature.

Zero intelligence

The main focus of Smith’s pioneering experiments was on the convergence of transaction prices in

different scenarios rather than examining why high efficiency is obtained. In a computerized world,

a question that arises naturally is whether these results can be replicated in electronic auctions. In

Smith’s experiments, as in real markets traditionally, the traders are human beings, but computer

programs are supposed to be automatic and work without human involvement. Obviously humans

are intelligent creatures, but programs are not, at least for the foreseeable future. Is it intelligence

that contributes to the high efficiency, or something else?

Gode and Sunder [Gode and Sunder, 1993a,b] were among the first to address this question,

claiming that no intelligence is necessary for the goal of achieving high efficiency; so the outcome

is due to the auction mechanism itself.

They reached this position having introduced two trading strategies: zero intelligence without

constraint or ZI-U and zero intelligence with constraint or ZI-C. ZI-U, the more naı̈ve version,

shouts an offer at a random price without considering whether it is losing money or not, while

ZI-C, which lacks the motivation of maximizing profit and picks a price in a similar way to ZI-U,

simply makes shouts that guarantee no loss.

It was shown that ZI-U performed poorly in terms of making a profit, but ZI-C generated high

efficiency solutions so that markets populated by ZI-C traders exhibited efficiency that compared
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well with that of markets populated by human traders and the efficiency obtained can be considered

to be a lower bound on the efficiency of markets [Gode and Sunder, 1993b].

Gode and Sunder’s experiments were set up with similar rules as in Smith’s. They designed

five different supply and demand schedules and tested each of them respectively with the three

kinds of homogeneous traders: ZI-U, ZI-C, and human traders.

Prices in the ZI-U market exhibited little systemic pattern and no tendency to converge toward

any specific level, but on the contrary, prices in the human market, after some initial adjustments,

settled in the proximity of the equilibrium price. Gode and Sunder then raised the question: how

much of the difference between the market outcomes with ZI-U traders and those with human

traders is attributable to intelligence and profit motivation, and how much is attributable to market

discipline?

They argued that, after examining the performance of the ZI-C markets, it was market discipline

that played a major role in achieving high efficiency. Though in the ZI-C market, the price series

showed no signs of improving from day to day, and the volatility of the price series was greater

than the volatility of the price series from the human market, the series converged slowly toward

equilibrium within each day. Gode and Sunder’s explanation was that it was due to the progressive

narrowing of the opportunity sets of ZI-C traders, e.g., the set of intra-marginal traders. Despite the

randomness of ZI-C, buyers with higher private values tend to generate higher offered prices and

they are likely to trade with sellers earlier than those buyers further down the demand curve. A

similar statement also holds for sellers. Thus as the auction goes on, the upper end of the demand

curve shifts down and the lower end of the supply curve moves up, which means the feasible range

of transaction prices narrows as more commodities are traded, and transaction prices will converge

to the equilibrium price. The fact that ZI-C traders lack profit motivation and have only the minimal

intelligence (just enough to avoid losing money) suggested that the market mechanism was the key
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to obtaining high efficiency.

Zero intelligence plus

Gode and Sunder’s results were, however, questioned by Cliff and Bruten [Cliff and Bruten, 1997].

Cliff and Bruten agreed on the point that the market mechanism played a major role in achieving

high efficiency, but disputed whether in ZI-C markets transaction prices will always converge on

an equilibrium price. They argued that the mean or expected value of the transaction price distri-

bution was shown quantitatively to get close to the equilibrium price only in situations where the

magnitude of the gradient of linear supply and demand curves was roughly equal, and used this to

infer that zero-intelligence traders are not sufficient to account for convergence to equilibrium.

Cliff and Bruten further designed an adaptive trading strategy called zero intelligence plus or

ZIP. Like ZI-C, ZIP traders make stochastic bids, but can adjust their prices based on the auction

history, i.e., raising or lowering their profit margins dynamically according to the actions of other

traders in the market. More specifically, ZIP traders raise the profit margin when a less competitive

offer from the competition22 is accepted, and lower the profit margin when a more competitive

offer from the competition is rejected, or an accepted offer from the other side of the market would

have been rejected by the subject. At every step, the profit margin is updated according to a

learning algorithm called the Widrow-Hoff delta rule [Widrow and Hoff, 1960] in which the value

being learned is adapted gradually towards a moving target, and the past targets leave discounting

momentum to some extent.

Cliff and Bruten concluded that the performance of ZIP traders in the experimental markets

was significantly closer to that of human traders than was the performance of ZI-C traders, based

on the observation that ZIP traders rapidly adapted to give profit dispersion23 levels that were in
22That is, sellers compete against sellers to get asks accepted and buyers compete against buyers to get bids ac-

cepted.
23Profit dispersion is the root mean squared difference between actual and equilibrium profits, and can be expressed
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some cases approximately a factor of ten less than those of ZI-C traders.

Preist and van Tol [Preist and van Tol, 1998] introduced a revised version of ZIP, which uses

simpler rules than those in ZIP and we call PVT. Their experiments incorporated consistent shouts,

i.e., shouts that will continue to exist until they are matched or the period of trading ends, while

the experiments by Cliff and Bruten allowed at most one shout to be active at any moment and the

active shout will be disregarded if it is not matched immediately. With PVT and the adoption of

persistent shouts, Preist and van Tol reported faster convergence to equilibrium and robustness to

changes in parameter configuration .

Roth and Erev

Other learning methods have been adopted to design even more complex trading strategies than ZIP

and its variants. Roth and Erev [Roth and Erev, 1995] proposed a stimuli-response strategy, which

we call RE. The RE strategy uses reinforcement learning to choose from n possible profit margins

over the agent’s private value based on a reward signal computed as a function of profits earned

in the previous round of bidding. It totally eliminates the dependence upon the information about

transactions and shouts in ZIP and therefore presents a universal solution to trading in all kinds of

auctions.

Gjerstad and Dickhaut

Taking a different path from RE and trying to make better use of information than ZIP, Gjerstad

and Dickhaut [Gjerstad and Dickhaut, 1998] suggested a best-response-based strategy, which is

as √
1
n

Σi(ai−πi)2,

where ai, i.e., |v j− p j| as in (2.2) on Page 19), and πi, i.e., |vi− p0| as in (2.1) on Page 19, are the actual and theoretical
equilibrium profits of trader i, i = 1, · · · ,n.
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commonly referred to as GD. GD traders keep a sliding window of the history of the shouts and

transactions and calculate the probabilities of their offers being accepted at different prices. The

traders use a cubic interpolation on the shouts and transaction prices in the sliding window in order

to compute the probability of future shouts being accepted. They then use this to calculate the

expected profit of those shouts. The expected profit at a price is the product of the probability of

the price being accepted and the difference between the price and the private value. GD traders

then always choose to bid or ask at a price that maximizes their expected profit. GD is much more

computation-intensive than those strategies above, and generated the best record both for allocative

efficiency and the speed of convergence to equilibrium.

In contrast to maximizing expected immediate profits as GD does, Tesauro and Bredin [Tesauro

and Bredin, 2002] considered maximizing the discounted cumulative profits of individual traders

and proposed a strategy called GDX that extends GD with an additional dynamic programming (DP)

component to do this. The DP component in GDX considers iterative steps along the combination

of two dimensions, the number of units of commodities that the trader has yet to trade and the

number of trading opportunities that the trader has until the end of the auction. At each moment,

GDX solves the DP model based on its expected returns at future steps and chooses the action—

either to shout at a certain price or not to shout at all—that maximizes the long-term return. They

showed through experiments that GDX was increasingly capable of beating GD and ZIP in terms of

the discounted long-term return when future profits were weighted higher.

Risk-Based and Adaptive-Aggressiveness

Following the framework of ZIP, Vytelingum et al. [Vytelingum et al., 2004] introduced a risk-

based trading strategy, or in short RB, for CDAs. RB adapts its shout price towards a moving target

price, just as ZIP does, but calculates the target price in a more sophisticated way, based on a risk



CHAPTER 3. EXPERIMENTAL APPROACHES 29

factor, r, and an estimated theoretical equilibrium price, p∗. With r ∈ [−1,1], the target price

is calculated through an interpolation function, satisfying the condition that for an intra-marginal

buyer—whose private value is higher than or equal to p∗—the target price equals p∗ when r = 0

(risk-neutral), equals 0 when r = 1 (risk-seeking), and equals the trader’s private value when r =−1

(risk-averse), and for an extra-marginal buyer—whose private value is lower than p∗—the target

price equals 0 when r = 1 and the trader’s private value when r≤ 0. The target price is determined

in a symmetric way for a seller. The risk factor starts with some initial value and is adjusted

to go up or down according to transaction and shout prices in the market, akin to the way the

profit margin is adjusted in ZIP.24 As transaction prices are expected to converge to the equilibrium

price, the average of transaction prices within a sliding window is used for p∗.25 The interpolation

function also relies upon a fixed parameter, θ , which controls the gradient of the curve of the

function. Vytelingum et al. showed that CDAs populated by RB traders obtain allocative efficiency

comparable to those populated by ZIP traders, and RB traders make more profit than both ZI-C and

ZIP when all three types of trader exist in a single market.

A more advanced version of RB was introduced by the same authors in 2008 and called a

strategy of adaptive aggressiveness, or AA [Vytelingum et al., 2008a]. AA allows θ to change

dynamically and r to be updated at a varying rate in response to different degrees of volatility of

market prices. Experimental results showed that AA outperforms ZIP and GDX in CDAs with either

homogeneous or heterogeneous populations.

24The risk factor, r, can be interpreted as a normalized profit margin. The term ‘risk’ here is somewhat misleading.
It is awkward to say that an agent changes its attitude towards risk, as r changes, in such a microscopic context as
within an auction. Indeed in AA, which is described immediately below, the modified version of RB, r is said to stand
for the degree of aggressiveness of traders.

25The same idea was adopted in auction rules as well to clear the market at the estimated equilibrium price (see PN

in Section 6.2.5) and to avoid shouts that have little chance to get matched (see AE in Section 6.2.3).
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3.2.2 Interaction of heterogeneous trading strategies

Early empirical work on DAs and trading strategies, including that by Smith [Smith, 1962], Gode

and Sunder [Gode and Sunder, 1993a], and Cliff and Bruten [Cliff and Bruten, 1997], has em-

ployed either human traders or homogeneous trading agents, demonstrating high efficiency and

fast convergence to equilibrium. From the viewpoint of individual traders, however, a major goal

is to maximize their own profit. It is no surprise that the authors of GDX, RB, and AA ran auctions

that were populated by heterogeneous trading agents to examine the relative superiority of their

strategies.

There are both theoretical and practical reasons for considering heterogeneous traders. As Rust

et al. argued in [Rust et al., 1993]:

Although current theories of DA markets have provided important insight into the

nature of trading strategies and price formation, it is fair to say that none of them

has provided a satisfactory resolution of “Hayek’s problem”.26 In particular, current

theories assume a substantial degree of implicit coordination by requiring that traders

have common knowledge of each other’s strategies (in game-theoretic models), or by

assuming that all traders use the same strategy (in learning models). Little is known

theoretically about price formation in DA markets populated by heterogeneous traders

with limited knowledge of their opponents.

. . . the assumption that players have common knowledge of each other’s beliefs and

strategies . . . presumes an unreasonably high degree of implicit coordination amongst

the traders ... Game theory also assumes that there is no a priori bound on traders’

ability to compute their BNE27 strategies. However, even traders with infinite, costless

26The Hayek’s problem is how the trading process aggregates traders’ dispersed information, driving the market
towards competitive equilibrium.

27This is the abbreviation of Bayesian Nash equilibrium. In game theory, players interact with each other in a



CHAPTER 3. EXPERIMENTAL APPROACHES 31

computing capabilities may still decide to deviate from their BNE strategies if they

believe that limitations of other traders force them to use a sub-optimal strategy.

They went on to argue that ZI-C and other strategies’ striking performance strongly suggests

that the nice properties have more to do with the market mechanism itself than the rationality

of traders. In addition, strategies that are more individually rational than ZI-C may display less

collective rationality since clever strategies can exploit unsophisticated ones such as the truth-

telling strategy, or TT,28 and ZI-C so that a more-intelligent extra-marginal trader has more chances

to finagle a transaction with an intra-marginal trader, causing market efficiency to fall.

To observe heterogeneous auctions, the Santa Fe Double Auction Tournament (SFDAT) was

held in 1990 and prizes were offered to entrants in proportion to the trading profits earned by their

programs over the course of the tournament. Thirty programs from researchers in various fields and

industry participated. According to [Rust et al., 1993], the majority of the programs encoded the

entrant’s “market intuition” using simple rules of thumb. The top-ranked program was KAPLAN,

named after the entrant. KAPLAN and the runner-up strategy were remarkably similar. Both “wait

in the background and let the others do the negotiating, but when bid and ask get sufficiently close,

jump in and steal the deal”.

The overall efficiency levels in the markets used in the tournaments originally appeared to

be somewhat lower than that observed in experimental markets with human traders (around 93%

versus, for example, 99% or higher in most of the experiments with human traders in [Gode and

Sunder, 1993a]), but experiments without the last-placed players produced an efficiency of around

game. Each player is associated with a set of actions and chooses among these actions to maximize its utility. A
rational player takes the action that is the best response to the opponents’ actions. When every player’s action is a best
response to the actions of the rest players, the joint action forms a Nash equilibrium. When a player has no complete
information about its opponents, it maintains a belief about the characteristics of these opponents in the form of, for
example, probability distributions, updates the belief as it interacts with the opponents using Bayes’ theorem, and
always chooses the action with the highest expected utility. When all the players maintain their own beliefs in such a
manner, and take actions that are best responses to each other, the joint action forms a Bayes Nash equilibrium.

28A TT trader honestly offers to trade at its private value.
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97%. This is further evidence that the properties of traders also affect the outcome of DA markets

to some extent.

Besides high efficiency levels and convergence to competitive equilibrium, other “stylized

facts” of human DA markets observed in the SFDAT included: reductions in transaction-price volatil-

ity and efficiency losses in successive trading days that seem to reflect apparent learning effects,

coexistence of extra-marginal and intra-marginal efficiency losses, and low-rank correlations be-

tween the realized order of transactions and the efficient order.29

Rust et al. reported after thorough examination of efficiency losses in the tournaments and

post-tournament experiments that the success of KAPLAN was due to its patience in waiting to

exploit the intelligence or stupidity of other trading strategies.30

The volume of e-commerce nowadays creates another motivation for evaluating trading strate-

gies in a heterogeneous environment. Electronic agents, on behalf of their human owners, can

automatically make strategic decisions and respond quickly to the changes in various kinds of

markets. In the foreseeable future, these agents will have to compete with a variety of agents using

a range of trading strategies and human traders. As more complex trading strategies appear, it is

natural to speculate on how these electronic minds will compete against their human counterparts.

Das et al. [Das et al., 2001] ran a series of CDAs allowing persistent orders31 populated by a

mixed population of automated agents (using modified GD and ZIP strategies) and human traders.

They found that though the efficiency of the CDAs was comparable with prior research, the agents

outperformed the humans in all the experiments, obtaining about 20% more profit. Das et al.

29The efficient order is the transaction sequence that maximizes surplus, meaning that the first transaction occurs
between the buyer with the highest private value and the seller with the lowest private value, the second transaction
occurs between the buyer and seller next to them, and so on. The realized order of transactions is the actual order in
which transactions are made.

30The usual higher efficiency of CHs than CDAs can also be viewed as the proactive elimination of the effect of
traders’ impatience.

31In the SFDAT and the CDA testing ZIP in [Cliff and Bruten, 1997], shouts that are outbid are removed from the
market, which is however not typical of real marketplaces.
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speculated that this was due to human errors or weakness, and human traders were observed to

improve their performance as they got familiar with using the trading software. Das et al. also

suggested that the weaknesses of trading agents may be found when human experts take them on

and thus improvement can be made to the algorithms of the agents.

Tesauro and Das [Tesauro and Das, 2001] executed experiments with both homogeneous and

heterogeneous trading agents with varying trader population composition, making it possible to

gain more insights into the relative competitiveness of trading strategies. In either the so-called

“one-in-many”32 tests or “balanced-group”33 tests, GD and ZIP (and their variants) exhibited supe-

rior performance over ZI-C and KAPLAN even when the market mechanisms vary to some extent.34

Furthermore, MGD, a variant of GD due to Das et al. [Das et al., 2001], outperformed all the other

strategies. The same configurations of one-in-many and balanced-group tests were also employed

in comparing RB with ZI and ZIP by Vytelingum et al. [Vytelingum et al., 2004].

The above approaches nevertheless all employed a fixed competition environment. In practice,

when a strategy dominates others, it tends to flourish and be adopted by more people. Rust et

al. were among the first to conduct evolutionary experiments, where the relative numbers of the

different trading strategies in a SFDAT market changed over time, so that more profitable strategies

became more numerous than less profitable ones. Such an analysis revealed that although KAPLAN

agents outperformed others when traders of different types were approximately evenly distributed,

they later exhibited low overall efficiency as they became the majority, making the evolution pro-

cess a cycle of ups and downs.

Walsh et al. [Walsh et al., 2002] gave a more formal analysis combining the game-theoretic

32A single agent of one type competes against an otherwise homogeneous population of a different type.
33Buyers and sellers are evenly split between two types, and every agent of one type has a counterpart of the other

type with identical limit prices.
34[Tesauro and Das, 2001] tested both with and without the NYSE shout improvement rule, a standing shout queue,

and allowance of shout modification.
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solution concept of Nash equilibrium, or NE, and replicator dynamics. This analysis is commonly

referred to as evolutionary game-theoretic analysis, or EGTA. In EGTA, heuristic strategies, rather

than the atomic actions like a bid or ask, are treated as primitive, and expected payoffs of each

individual strategy are computed at certain points of the joint heuristic strategy space.35 This

method reduces the model of the game from a potentially very complex, multi-stage game to a

one-shot game in normal form. At points where one strategy gains more than others, replicator

dynamics dictates that the whole population moves to a nearby point where the winning strategy

takes a larger fraction of the population. This process continues until an equilibrium point is

reached where all strategies are equally competitive in terms of their expected payoffs. There may

be multiple equilibrium points36 ‘absorbing’ areas of different sizes, basins of the equilibria, which

together compose the whole strategy space.

For example, Figure 3.1a, taken from [Walsh et al., 2002], shows the replicator dynamics of a

CDA market with three strategies. A, B, C, and D are all equilibrium points, but B and D are not

stable since a small deviation from them will lead to one of the other equilibria. The replicator

dynamics gives an overview of the interaction of the three strategies and their relative competitive-

ness. The arrows show the directions in which the whole population moves at different points, and

the shading indicates how much the strategies differ in terms of their expected payoffs, which may

tell how fast the population moves towards the equilibrium points. What’s more, a technique called

perturbation analysis can be used to evaluate the potential to improve on a strategy. Figure 3.1b,

also from [Walsh et al., 2002], shows the replicator dynamics of the same strategies after small

portions of both ZIP and KAPLAN’s payoffs are shifted to GD. This shift significantly changes the

landscape of the space, and GD dominates in most of possible combinations. This shows that a

‘tiny’ (in the words of [Walsh et al., 2002]) improvement in the GD strategy may greatly affect its

35That is a space of a mixture of strategies when their relative proportions vary.
36Each equilibrium point also represents a mixed strategy, a homogeneous population of which makes a NE.
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Figure 3.1: The replicator dynamics of CDA with ZIP, KAPLAN, and GD. Originally Figure 2
in [Walsh et al., 2002].

competitiveness against the other strategies.

Phelps et al. [Phelps et al., 2005, 2006] took a similar approach in comparing the RE, TT, and

GD strategies, showed the potential of RE, and demonstrated that a modified RE strategy could be

evolved by optimizing its learning component.

The main drawback of this approach is an exponential dependence on the number of strategies,

which limits its applicability to real-world domains where there are potentially many heuristic

strategies. Walsh et al. [Walsh et al., 2003] proposed information theoretic approaches to de-

liberately choose the sample points in the strategy space through an interleaving of equilibrium

calculations and payoff refinement, thus reducing the number of samples required.
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3.2.3 Automated strategy acquisition

Designing heuristic strategies to a great extent depends on the intelligence and experience of the

strategy designer. Prior studies have also demonstrated that the performance of heuristic strategies

hinges on the selection of parameter values. It is preferable that automatic optimization is used to

find best parameter combinations and further identify better strategies automatically. Pioneering

work [Cliff, 2001b; Phelps, 2007] along this avenue adopted evolutionary computation to address

the challenge.

Evolutionary computation

A genetic algorithm (or GA) is a search technique used in computing to find true or approxi-

mate solutions to optimization and search problems. Genetic algorithms are a particular class of

evolutionary algorithms that use techniques inspired by evolutionary biology such as inheritance,

mutation, selection, and crossover [Forrest, 1993; Goldberg, 1989; Holland, 1975].

A typical GA maintains a set of individuals of some kind, each as a candidate solution to some

problem of interest. These individuals, can be selected and matched to reproduce generation by

generation just as a population of biological individuals do in the natural world. The chance of

an individual getting selected for reproduction is based on its fitness, which measures the quality

of the solution to the problem. Basically, the fitter an individual is, the better chance it will be

selected.

Each individual in a GA is expressed as an instance of the genetic representation of the solution

domain. The representation is also called the genotype or chromosome of the solution species. A

standard representation of solution is as an array of bits. Arrays of other types, trees, or other kinds

of structures can be used in essentially the same way.

The fitness of an individual is determined by a fitness function, which is defined over the genetic
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representation of a solution and measures the quality of the solution. The fitness function is always

problem dependent. For instance, in the knapsack problem we want to maximize the total value of

objects that can be put in a knapsack of some fixed capacity. Assuming that there are n objects to

fill the knapsack of capacity S and item i has a value of vi and a size of si, a solution to this problem

might be represented by an array of n bits, where the ith bit determines whether or not to put object

i into the knapsack with 1 for yes and 0 for no. Not every such representation is valid, as the size of

objects may exceed the capacity of the knapsack. The fitness of the solution can then be defined as

the sum of values of all objects in the knapsack if the representation is valid, or 0 otherwise. That

is, given an individual, bn−1 . . .b1b0, the fitness of the individual is

F(bn−1 . . .b1b0) =


n−1

∑
i=0

(vibi) if
n−1

∑
i=0

(sibi)≤ S

0 otherwise.

For some problems, it is hard or even impossible to define the fitness expression, and external

components like human interactions may be used to evaluate solutions, as in interactive genetic

algorithms. For some other problems, there are no absolute metrics of fitness that exist and the

fitness function needs to take more than one solution as input to compute a relative fitness of one

solution against the others, e.g., in searching for better strategies for some multi-player game where

no dominating strategy exists.

After the individuals in the population are evaluated, their fitnesses are used to select individu-

als with high fitness for reproduction to construct the next generation of individuals. The selection

and reproduction steps require different types of operators, typically including selection opera-

tors, mutation operators, and crossover operators. A selection operator controls how to select

individuals from the previous generation. One example is to select individuals probabilistically,

in proportional to their fitnesses. A mutation operator governs how to tweak a single, selected
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individual to generate a usually slightly different individual so as to have a random search around

the parent individual in the solution space. When an array of bits is used as the representation, the

most common mutation operator is to flip the bits in the array independently with a relatively low

probability, i.e., what is called the mutation rate. A crossover operator supports multiple, usually

two, individuals to switch part of their genetic materials to construct offsprings. For instance, when

the individuals are represented by a fixed-length array of bits, a crossover operator may switch bits

between two parent individuals that are located in the same segment in the two arrays. These

operators can be designed and organized in many different ways to form a pipeline to produce

offsprings.

In a GA, the initial population of individuals is typically generated randomly and evolves gen-

eration by generation after iteratively applying the operators. The fitnesses of individuals basically

improve across generations, at least in part, due to the random exploration at the beginning, the

biased search in selection, and the combination of partial solutions in crossover [Forrest, 1996].

The introduction of GAs here is limited to the simple, classic model of GA in many aspects, but

this model is exactly what was used in the early work on automated acquisition of trading strategies

and auction mechanisms.

Optimizing parameter combination in ZIP

Cliff addressed the labor-intensive manual parameter optimization for the ZIP strategy, automati-

cally optimizing parameter selection using a GA [Cliff, 2001b]. He identified eight parameters in

ZIP: lower and upper bounds of the learning rate β (how fast to move towards the target), momen-

tum γ (how much past momentum37 to carry over), initial profit margin µ , and the upper bounds

of the ranges defining the distributions of absolute and relative perturbations on learned prices,

37The momentum is a a discounted sum of distances to the targets in the past.
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respectively denoted as ca and cr. These real parameters make an eight-dimensional space and any

parameter value combination corresponds to a point in that space. The vector of the eight param-

eters defines an ideal genotype. To evaluate a combination of parameter values for ZIP, or more

correctly, a ZIP variant, Cliff ran a CDA market populated by 22 homogeneous trading agents that

all adopted the same ZIP variant, and used a weighted sum of daily coefficient of convergence38 of

the market as the fitness of this ZIP variant. He showed that this GA-based approach was effective

in optimizing the parameter space of the ZIP strategy.

Combining GA and EGTA

Phelps et al. [Phelps et al., 2005, 2006] took this track a step further and focused on how to

optimize trading strategies to maximize profits of individual traders. They combined the EGTA

method and a GA, identified a strategy as the basis for optimization, and successfully evolved the

strategy and acquired an optimized strategy that can beat GD, commonly considered then one of

the most competitive strategies.

Since it is not realistic to seek “best”, or even “good”, strategies that can beat all potential

opponents because an absolutely dominating strategy does not appear to exist in the CDA trading

scenario—since the performance of a strategy depends greatly on the types of the opponents—

Phelps et al. proposed using a small finite population of randomly sampled strategies to approxi-

mate the game with an infinite strategy population consisting of a mixture of all possible strategies.

In particular, RE, TT, and GD were chosen as sample strategies. Following the EGTA and pertur-

bation methods in [Walsh et al., 2002], RE was found to have the potential to dominate TT and

GD.

As described above, RE traders adapt their trading behavior by learning from their profits in

38The α we defined in Section 2.4.2.
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successive auction rounds. Potentially, the RE learning algorithm may be replaced by a number

of learning algorithms, including SQ (stateless Q-learning), NPT (a modified version of RE used

in [Nicolaisen et al., 2001]), and DR (a control algorithm which selects a uniformly random ac-

tion regardless of reward signal). Phelps et al. then encoded the genotype to select any of these

algorithms together with their parameters. The evolutionary search procedure they used is similar

to Cliff’s except that the individuals in a generation are evaluated again with EGTA and the basin

size is used as a measure of fitness. The experiment finally found a SQ algorithm with a particular

parameter combination, which together with TT composes a Nash equilibrium that captures 97%

of the strategy space populated by the learned strategy, TT, RE, and GD.

Combining reinforcement learning and EGTA

Schvartzman and Wellman [Schvartzman and Wellman, 2009b] conducted the most comprehensive

EGTA of trading strategies for CDAs to date and interleaved the EGTA steps with reinforcement

learning steps, culminating in strategies that were able to deviate from Nash equilibria formed by

strategies from the literature and arrive at new equilibria supported by these new strategies.

First, Schvartzman and Wellman defined a new framework that used reinforcement learning

(RL) [Sutton and Barto, 1998] to decide how to trade. An RL agent aims to maximize its long-term

return through trial-and-error. The agent models its situated environment with states, explores

actions that are available at different states, and takes the best actions to its knowledge. The states

summarize market conditions with information involving prices of recent transactions, prices of

outstanding shouts, time elapsed, number of units of commodities left to trade, and private values

of these units. The actions at each state are mapped to prices to shout.

Next, Schvartzman and Wellman ran an EGTA of a given set of strategies chosen from the known

strategies in the literature,39 calculated the Nash equilibrium strategy, and trained agents playing
39No more than three strategies were involved at each step of EGTA, probably a deliberate choice of the authors to
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the RL strategy against agents playing the equilibrium strategy until the RL strategy converged. If

the payoff of the obtained RL strategy was higher than that of the equilibrium strategy,40 meaning

the RL strategy could deviate from the equilibrium, this new RL strategy joined the pure strategies

that were present in the equilibrium for the next step of EGTA and a new RL strategy was trained.

If the equilibrium strategy itself was a pure strategy or the obtained RL strategy failed to deviate

from the equilibrium, another strategy from the known strategies in the literature was selected and

put into the set of strategies for the next step of EGTA.41 This process repeated until all the known

strategies had been considered.

The strategies from the literature that were used in the experiments included KAPLAN, ZI-C, GD,

GDX, AA, and RB as well as ZIbtq, a variant of ZI-C devised by the authors, which picks up a price

randomly from a distribution between the private value and the corresponding market quote.42 In

the end, the iterative process of EGTA and RL reached a mixed equilibrium that was made up of

two new strategies. A comparison between one of the two strategies and GDX revealed that the

new strategy was more willing to give up profit in certain circumstances and acted faster to accept

shouts with good prices than GDX.43

avoid higher computational costs with more strategies.
40At each step of EGTA it turned out that only one equilibrium existed in their experiments. In theory, multiple

equilibria may exist and when this happens, one way to calculate the payoff is to use the average across these equilibria
weighted by the size of their basins [Phelps et al., 2004].

41This pattern was not followed all the time as the experiments themselves were trial-and-error. For example, when
a Nash equilibrium that was a pure GD was reached, the authors tweaked the RL model several times and trained the
new models so as to find a RL strategy that could deviate from the pure equilibrium.

42ZIbtq is therefore less resistant in giving up profit than ZI and, not surprisingly, dominated by ZI in their experi-
ments.

43It should be noted that the strategies derived through the iterative process were more competitive in the heteroge-
neous scenarios as shown by the EGTAs, but were not the best choice for homogeneous populations of traders where the
aim was to maximize the social welfare. For example, the experiments in [Schvartzman and Wellman, 2009b] showed
that the Nash equilibrium supported by a pure GD strategy yielded a higher payoff than any other homogeneous strategy
equilibrium.
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3.3 Agent-based auction mechanism design

The story of trading strategies in the preceding section was only one facet of research on auc-

tions. Gode and Sunder’s results suggested that auction mechanisms played an important role in

determining the outcome of an auction, and this was further borne out by the work of Walsh et

al. [Walsh et al., 2002], which also pointed out that results hinged on both auction design and the

mix of trading strategies used.

According to classical auction theory, if an auction is strategy-proof or incentive compati-

ble, traders need not bother to conceal their private values and in such auctions complex trading

agents are not required. Indeed, mechanism design traditionally focused on designing strategy-

proof auctions [Conitzer and Sandholm, 2007]. However, typical DAs are not strategy-proof.

McAfee [McAfee, 1992] has derived a form of double auction that is strategy-proof, though this

strategy-proofness comes at the cost of lower efficiency.

It has been common in the domain of DAs for researchers to take empirical approaches using

machine learning techniques, sometimes combined with methods from traditional game theory.

Instead of trying to design optimal auction mechanisms, the computational approach looks for

relatively good auctions and aims to make them better, in a noisy economic environment with

traders that are not perfectly rational.

3.3.1 A parameterized space of auctions

One can think of different forms of auctions as employing variations of a common set of the

auction rules, forming a parameterized auction space. Wurman et al. [Wurman et al., 2001, 2002]

and others [Rothkopf and Park, 2001] parameterized auction rules in a way that can be summarized

as follows:
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• Bidding rules: determine the semantic content of messages, the authority to place certain

types of bids, and admissibility criteria for submission and withdrawal of bids.

– How many sellers and buyers are there?

– Are both groups allowed to make shouts?

– How is a shout expressed?

– Does a shout have to beat the corresponding market quote if one exists?

• Information revelation:

– When and what market quotes are generated and announced?

– Are shouts visible to all traders?

• Clearing policy:

– When does clearing a market take place?

– When does a market close?

– How are shouts matched?

– How is a transaction price determined?

The idea of parameterizing the auction space not only eases the heuristic auction mechanism

design, but also makes it possible to ‘search’ for better mechanisms in an automated manner [Cliff

et al., 2002; Phelps et al., 2002; Sandholm, 2003].

It is not yet clear how auction design, and thus the choice of parameter values, contributes

to the observed performance of auctions. Thus it is not clear how to create an auction with a

particular specification. It is possible to design simple mechanisms in a provably correct manner

from a specification, as shown by Conitzer and Sandholm [Conitzer and Sandholm, 2003, 2004].
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However it is not clear that this kind of approach can be extended to mechanisms as complex as

DAs. As a result, it seems that double auction mechanisms have to be designed experimentally, at

least for the foreseeable future.

Of course, doing things experimentally does not solve the general problem. A typical ex-

perimental approach is to fix all but one parameter, creating a one-dimensional space, and then

measure performance across a number of discrete sample points in the space, obtaining a fitness

landscape that is expected to show how the factor in question correlates to a certain type of perfor-

mance and how the auction can be optimized by tweaking the value of that factor [Phelps et al.,

2003]. In other words, the experimental approach examines one small part of a mechanism and

tries to optimize that part.44 The situation is complicated when more than one factor needs to be

taken into consideration—the search space then becomes complex and multidimensional, and the

computation required to map and search it quickly becomes prohibitive.

3.3.2 Evolving auction mechanisms

Instead of manual search, some researchers have used evolutionary computation to automate mech-

anism design [Phelps et al., 2010] in a way that is similar to the evolutionary approach to optimizing

trading strategies. Indeed, the work has been carried out by some of the same researchers.

Cliff [Cliff, 2001a] explored a continuous space of auction mechanisms by varying the proba-

bility of the next shout (at any point in time) being made by a seller, denoted by Qs. The continuum

includes the CDA (Qs = 0.5) and also two purely single-sided mechanisms that are similar to the

English auction (Qs = 0.0) and the Dutch auction (Qs = 1.0). Cliff’s experiments used genetic

algorithms and found that a Qs that corresponds to a completely new kind of auction led to a

better α value than that obtained for other markets using ZIP traders. Walia et al. [Walia et al.,

44And of course there are rarely any guarantees as to the optimality of the results.
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2002] and [Cliff et al., 2002] (the same authors but in a different order) continued with this work,

showing that the approach is also effective in markets using ZI-C traders, and the new “irregular”

mechanisms can lead to high efficiency with a range of different supply and demand schedules as

well. The visualization of fitness landscapes in this work, using plots including 3D histograms and

contours, is also noteworthy.

Byde [Byde, 2003] took a similar approach in studying the space of auction mechanisms be-

tween the first and second-price sealed-bid auctions. The winner’s payment in an auction sampled

from the space is determined as a weighted average of the two highest bids, with the weighting

determined by the auction parameter. For a given population of bidders, the revenue-maximizing

parameter is approximated by considering a number of parameter choices over the allowed range,

using a GA to learn the parameters of the bidders’ strategies for each choice, and observing the re-

sulting average revenues. For different bidder populations (varying bidder counts, risk sensitivity,

and correlation of signals), different auction parameter values are found to maximize revenue.

Taking another tack, Phelps et al. [Phelps et al., 2003] explored the use of genetic program-

ming to determine auction mechanism rules automatically. Genetic programming (or GP), another

form of evolutionary computation, evolves programs (or expressions) rather than the binary strings

evolved in GAs. This makes automatic programming possible, and in theory allows even more

flexibility and effectiveness in finding optimal solutions in the domain of concern. In GP, programs

are traditionally encoded as tree structures. Each branching node has an operator function and

each terminal node has an operand, making it easy to evolve and evaluate the tree structure. With

this type of structure, crossover is applied on an individual by simply switching one of its nodes

with another node from another individual in the population. Mutation can replace a whole node

in the selected individual, or it can replace just the information of that node. Replacing a node

means replacing the whole branch. This adds greater effectiveness to the crossover and mutation
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operators [Koza, 1992].

Phelps et al. demonstrated how GP can be used to find an optimal point in a space of pricing

policies, where the notion of optimality is based on a combination of allocative efficiency and

trader market power. In DA markets, there are two popular pricing policies: the k-DA pricing

rule [Satterthwaite and Williams, 1993] and the uniform pricing policy. The former calculates the

transaction price for a matched ask-bid pair as:

p = k · pa +(1− k) · pb

where k ∈ [0,1], and pa and pb are ask and bid prices. The latter executes all transactions at

the same price, typically the middle point of the interval between the market ask and bid quotes.

Searching in the space of arithmetic combinations of shout prices and market quotes including the

above two rules as special cases, led to a complex expression that is virtually indistinguishable

from the k = 0.5 version of the k-DA pricing rule. This shows that the middle-point transaction

pricing rule not only reflects the traditional practice but also can be technically justified.

Noting that the performance of an auction mechanism always depends on the mix of traders

participating in the mechanism, and that both the auction mechanism and the trading strategies

may adapt simultaneously, Phelps et al. [Phelps et al., 2002] further investigated the use of co-

evolution in optimizing auction mechanisms. They first co-evolved buyer and seller strategies

and then evolved trader strategies together with auction mechanisms. The approach was able to

produce outcomes with reasonable efficiency in both cases.
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3.3.3 Evaluating auction mechanisms

Phelps et al. [Phelps et al., 2004] proposed a novel way to evaluate and compare the performances

of market mechanisms using heuristic strategy analysis.

Despite the fact that the performance of an auction mechanism may vary significantly when

the mechanism engages different sets of trading agents, previous research on auctions analyzed the

properties of DA markets using an arbitrary selection of homogeneous trading strategies. A more

sound approach is to find the equilibria of the game between the participating trading strategies

and measure the auction mechanism at those equilibrium points. As Sections 3.2.2 and 3.2.3 have

discussed, the EGTA analysis calculates equilibria among a representative collection of strategies.

This makes the method ideal for measuring market mechanisms at those relatively stable equilibria.

The representative strategies selected by Phelps et al. included RE, PVT, and TT. The EGTA anal-

ysis revealed that: (1) neither the CDA nor the CH mechanism was strategy-proof since TT was not

dominant in either market; (2) increasing the number of agents in the CH led to the appearance of

an equilibrium basin for an equilibrium near TT, which agreed with the conclusion drawn through

the approximate analysis in [Satterthwaite and Williams, 1989] that BNE strategies converged to TT

and inefficiency vanished fast as the market increases in size; and (3) the CH had higher efficiency

than the CDA in the sense that the three equilibrium points45 in the dynamics field for the CH all

generated 100% efficiency while the only equilibrium46 for the CDA produced 98% efficiency. One

can interpret the small efficiency loss when moving to a CDA from a CH as a post-hoc justification

of the NYSE’s use of a CDA rather than a CH for faster transactions and higher volumes.

One avenue of future research is to combine this evaluation method with evolutionary compu-

tation to optimize DA mechanisms.

45Each fell onto one of the three pure strategies, though the sizes of their basins varied.
46Pure RE strategy.
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3.3.4 Adaptive auction mechanisms

Considering that the information about the population of traders is usually unknown to the auction

mechanism, and many analytic methods depend on specific assumptions about traders, Pardoe and

Stone [Pardoe and Stone, 2005] advocated a self-adapting auction mechanism that adjusts auction

parameters in response to past auction results.

Their framework included an evaluator module, which can create an auction mechanism for

online use, monitor the performance of the mechanism, and use the economic properties of the

mechanism as feedback to guide the discovery of better parameter combinations. This process

then created better auction mechanisms that continued to interact with traders which were them-

selves possibly evolving at the same time. A classic algorithm for n-armed bandit problems, ε-

greedy [Sutton and Barto, 1998], was used in the evaluator module to make decisions on parameter

value selection.

The main feature of their work is that auction mechanisms were optimized during their opera-

tion while the mechanisms in the approaches discussed previously in this chapter remained static

even when they faced a set of traders that were different from those used in searching for the mech-

anisms. In theory, traders and the auction mechanism may form a co-evolutionary system and both

sides try to adapt towards a best response to the rest of the system.



Chapter 4
Competing marketplaces

Despite the variety of the work on auction mechanism design, it has one common theme—it all

studies single marketplaces. In contrast, not only do traders in an auction compete against each

other, real market institutions, like stock and commodity exchanges, face competition from other

marketplaces [Shah, 1997]. Company stock is frequently listed on several stock exchanges. US

companies, for example, may be listed on both the NYSE, the NASDAQ, and, in the case of larger

firms, non-US stock markets like the London Stock Exchange (LSE). Indian companies can be

listed on both the National Stock Exchange (NSE) and the Bombay Stock Exchange (BSE) [Shah

and Thomas, 2000].

Such multiple marketplaces for the same goods induce complex interactions. The simplest

example of this is the work of arbitrageurs who exploit price differences between marketplaces

to buy low in one and sell high in another.47 More complex dynamics occur when marketplaces

compete, as when the NSE opened and proceeded to claim much of the trade volume from the

established BSE [Shah and Thomas, 2000], or when the newly created Singapore International

47In addition, futures exchanges make it possible for dealers in a particular commodity to offset their risks by
trading options—commitments to buy or sell at a future date at a certain price—in that commodity, and provide
further opportunities for arbitrage.

49
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Monetary Exchange (SIMEX) did the same to Japanese stock markets for index futures on Nikkei

225 in the late 1980s [Shah, 1997]. These changes took place over a long period of time, but

inter-market dynamics can have much shorter timescales, as was the case in the flow between the

CME and the NYSE during the global stock market crash of 1987 [Miller et al., 1988]. This kind of

interaction between marketplaces has not been widely studied, least of all using automated traders.

In addition, previous studies usually present comparisons of auction mechanisms indirectly,

using different proprietary settings that differ in available information, computational resources

and so on. As a result, mechanisms are difficult to compare, and it is desirable to have some

platform that helps to evaluate auction mechanisms in a direct, uniform way.

This chapter will first introduce a game that allows multiple competing marketplaces to run

in parallel and traders to move between them, and then provide an analysis of scenarios in which

trading agents choose between marketplaces that impose different levels of charges. Although the

complexity of the game is much less than that in the real world, this is the first step to address the

imbalance between the prior experimental work and the reality, and provides a useful tool through

controlled simulations to gain insights on how to design effective auction mechanisms in such a

competitive environment.

4.1 CAT games

The Trading Agent Competition (TAC)48 Market Design Tournament [Niu et al., 2008b], also

known as the CAT Tournament or CAT Game, was initiated in 2007 to evaluate market mechanisms
48The Trading Agent Competition [Wellman et al., 2003] was organized to promote and encourage high quality

research into trading agents. Under the TAC umbrella, besides the CAT Game described here, a series of tournaments
have been held, including TAC Classic, which ran from 2000 to 2006, TAC Supply Chain Management, which has
run since 2003, and the latest TAC Ad Auctions, which has run twice since 2009. More information about TAC can be
found at http://tradingagents.org/.

http://tradingagents.org/
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in a competitive environment.49 Other TAC competitions have competing trading agents that aim

to maximize their payoffs by interacting in a single marketplace. CAT games do just the opposite.

Each entrant in the competition provides a specialist that regulates a marketplace with a set of

auction rules, and these specialists compete against each other to attract traders and make profit.

Traders in CAT games are provided by the game organizer and each of them learns to choose the

best marketplace to trade in.50

The CAT tournaments were organized jointly by our Agents Lab at the City University of New

York (CUNY) and collaborators from two universities in the United Kingdom, University of Liv-

erpool and University of Southampton. The CUNY team was responsible for the detailed design of

the game and the development of the supporting software platform, JCAT [Niu et al., 2008c]. I was

the lead developer and the main contributor to this effort.

4.1.1 Game procedure

A CAT game lasts a certain number of days, each day consists of rounds, and each round lasts

a certain number of ticks, or milliseconds. Each game involves traders, who buy or sell goods,

and specialists, who provide marketplaces for those goods, enabling the trade. All traders and

specialists are required to check in with the game server prior to the start of a game, and the list of

all clients, including both traders and specialists, is broadcast to each client afterwards.

Before the opening of each day, the specialists are required to announce their price lists, which

are then forwarded to all clients by the game server. After a day is opened, traders can register

with one of the specialists (and only one specialist). Their choice of specialist depends on both the

announced fees for that day and the profits obtained in previous days. Traders always tend to go to

49The CAT tournament has been held four times so far, affiliated with an academic conference each time. The first
event was with AAAI’07, the second with AAAI’08, the third with IJCAI’09, and the fourth with EC’10.

50Theoretically a CAT game may have both traders and specialists submitted by entrants. Thus two competitions,
one for traders and the other for markets, could be coupled together.



CHAPTER 4. COMPETING MARKETPLACES 52

specialists where they expect the highest profits.

Actual trade is allowed only during a round, during which traders submit shouts to the special-

ists they are registered with. A specialist has the option to either accept or reject a shout. A shout

becomes active once it is accepted, and remains active until it is successfully matched with another

shout or the trading day ends. A specialist may match asks and bids any time during a round. A

matched bid must have a price no lower than the corresponding ask, and the transaction price that

is set must fall in between the bid and the ask.

After a day closes, information on the profit made by each specialist and the number of traders

registered with it is disclosed, and this allows specialists to adapt or learn to improve their compet-

itiveness.

4.1.2 Traders

Each trading agent is assigned private values for the goods to be traded, based on the independent

private-value model that was described in Section 2.2. The private values and the number of goods

to buy or sell determine the supply and demand of the markets. The private values remain constant

during a day, but may change from day to day. Each trading agent is also endowed with a trading

strategy and a market selection strategy to do two tasks. Respectively, one is to decide how to

make offers, and the other is to choose the marketplace to make offers in. These two tasks allow

our traders to exhibit intelligence in two, orthogonal, ways.

Trading strategies

Each trader uses one of the four trading strategies: ZI-C, ZIP, RE, and GD. The reason for picking

these among numerous others is that these four strategies have been extensively researched in the

literature and some of them have been shown to work well in practice. In particular, we pick
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ZI-C because it is not making bids with any intelligence. Any effects that are observed have to

be a result of market structure, rather than a consequence of the trading strategy, and hence will

be robust across marketplaces inhabited by different kinds of trader. In addition, we would like

to see whether an entrant in the CAT game can design a mechanism that takes advantage of this

naı̈ve strategy. The reason for picking ZIP and RE is that the former strategy is typical of the

behavior of automated traders, while the latter is a good model of human bidding behaviors. Using

both will give us results indicative of markets with both human and software traders. As for GD,

our consideration is that the sophisticated strategy can help us to compare situations that involve

effective traders and situations that do not. ZIP and GD require information about the offers made

by other traders and the results of those offers that ZI-C and RE do not need, and so traders that

use these strategies may incur higher costs when specialists impose charges on information about

shouts and transactions.

Market selection strategies

The market selection strategies that may be adopted by a trading agent include:

• random: the trader randomly picks a marketplace;

• ε-greedy: the trader treats the choice of marketplace as an n-armed bandit problem which

it solves using an ε-greedy exploration policy [Sutton and Barto, 1998, Section 2.2]. An

ε-greedy trader takes daily profits as rewards when updating its value function.

An ε-greedy trader chooses what it estimates to be the best marketplace with probability

1− ε , and with probability ε chooses one of the remaining marketplaces (picking between

them with equal probability). ε may remain constant or be variable over time, depending

upon the value of a parameter α . If α is 1, ε remains constant, while if α takes any value in

(0,1), ε will decrease over time by a factor of α each step.
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• softmax: the trader is similar to an ε-greedy trader except that it uses a softmax exploration

policy in the n-armed bandit algorithm [Sutton and Barto, 1998, Section 2.3].

Unlike an ε-greedy trader, a softmax trader does not treat all marketplaces, other than the

best marketplace, exactly the same. If it does not choose the best marketplace, it weights

the choice among the remaining marketplaces so that it is more likely to choose better mar-

ketplaces. There are of course a large number of different ways to do so, and the most

common way is following a Boltzman distribution, according to which, the probability to

choose action a among n actions is

eQ(a)/τ

∑
n−1
i=0 eQ(ai)/τ

(4.1)

where Q(ai) is the estimated value of action ai and the positive parameter τ is called the

temperature. τ is used to control the relative importance of the weights assigned to actions,

or in the market selection scenario, marketplaces. Similar to ε , τ may be fixed or variable

depending upon the value of α . When τ is much larger than the likely values of Q(ai), the

trader chooses all marketplaces with approximately equal probabilities, while when τ → 0,

the trader stops exploring and greedily chooses the best marketplace according to its experi-

ence. As the effect of τ depends upon its relative value compared to Q(ai), we normalize the

estimated values of actions in this market selection strategy before using them in (4.1) such

that the largest Q(ai) is always 1 and τ can be configured independent of the domain.

4.1.3 Specialists

Specialists facilitate trade by matching asks and bids and determining the trading price in an ex-

change marketplace. Each specialist operates its own exchange marketplace and may choose what-
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ever auction rules it desires. Specialists are permitted and even encouraged to have adaptive strate-

gies such that the policies change during the course of a game in response to market conditions.

A specialist can set its fees, or price list, which are charged to traders and other specialists who

wish to use the services provided by the specialist. Each specialist is free to set the level of the

charges (from zero up to some reasonable upper bounds). These are the following:

• Registration fees. Fees charged for registering with a specialist.

• Information fees. Fees for receiving market information from a specialist.

• Shout fees. Fees for successfully placing asks and bids.51

• Transaction fees. A flat charge for each successful transaction.

• Profit fees. A share of the profit made by traders, where a trader’s profit is calculated as the

difference between the shout and transaction price.

The first four types of fees are each a flat charge, and the last one is a percentage charged on the

profit made by the traders involved in the transaction. A trader pays the registration and information

fees at most once every trading day.

4.1.4 Assessment

The performance of specialists in a CAT game is assessed every day on multiple criteria. To en-

courage sustainable operation,52 not all the trading days are used for assessment purposes, despite

51In a CAT game, a specialist could reject a shout placed by a trader so that the shout will not even have a chance to
get matched with a shout from the opposite side. There will be no shout fee charged if a shout is rejected.

52Traders provided in a CAT game are of limited intelligence and the limited intelligence to much extent relies upon
their exploration between marketplaces over time. Entrants who simply want to win the game might therefore, for
example, charge wildly high fees once in a while, and do not make much effort to design auction mechanisms that
perform well in a long term. The probabilistic selection of assessment days increases the risk of specialists in charging
high fees spontaneously.
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the fact that the game has a start-day and an end-day, and the selected assessment days are kept

secret to entrants until they have been passed.

Each specialist is assessed on three criteria on each assessment day:

• profit share: the profit share score of a specialist on a particular day is given by the total

profits obtained by that specialist on that day as a proportion of the total profits obtained by

all specialists on that same day.

• market share: of those traders who have registered with a specialist on a particular day, the

market share score of a specialist on that day is the proportion of traders that have registered

with that specialist on that day.

• transaction success rate: the transaction success rate score for a specialist on a given day is

the proportion of asks and bids placed with that specialist on that day which that specialist

is able to match. In the case where no shouts are placed, the transaction success rate score is

calculated as zero.

Each of these three criteria results in a value between 0 and 1 for each specialist for each day. The

three criteria are then weighted equally and added together to produce a combined score. Scores

are then summed across all assessment days to produce a final game score for each specialist. The

specialist with the highest final game score will win the game.

4.1.5 Competition platform

JCAT [Niu et al., 2008c] is the platform that was built to support CAT games. JCAT extends the

single-threading JASA package [Phelps, 2005] and adopts a client/server architecture. As Figure 4.1

illustrates, the CAT server works as a communication hub and the central time controller, and CAT

clients—either specialists or traders—communicate with each other via the server. On one side, the
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Figure 4.1: The architecture of JCAT.

CAT server takes traders’ requests, including registering with a specialist, placing and modifying

shouts, and forwards them to specialists; on the other side, specialists notify the CAT server of

matching shouts and, via the server, inform traders. The behaviors of the CAT server and CAT

clients are regulated by the CAT Protocol, or CATP [Niu et al., 2007b]. The CAT server uses a

registry component to record all game events and validate requests from traders and specialists.

Various game report modules are available to process subsets of game events, calculate and output

different metrics for post-game analysis.

JCAT implements a parameterized framework for double auctions, which was published in [Niu

et al., 2008b]. The framework can be easily extended to accommodate new auction rules. Chapter 6

will describe this framework in detail and discuss how to employ this structure to construct auction

mechanisms.
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4.2 On the behavior of competing marketplaces populated by

automated traders

To examine the effectiveness of CAT games in evaluating the relative strength of market mecha-

nisms, we ran a series of experiments that include marketplaces with a range of charging policies

and traders that use simple reinforcement learning rules to select among marketplaces. This section

will present the results that we obtained. The results were first published in [Niu et al., 2007a].

In doing this, our work has a different focus from the work on market mechanisms that was

reviewed in Chapter 3. That work is focused on how the performance of traders helps achieve

economic goals like high efficiency [Gode and Sunder, 1993a] and trading near equilibrium [Cliff

and Bruten, 1997], or how traders compete amongst themselves to achieve high profits [Tesauro

and Das, 2001]. In contrast, we are interested in competition between marketplaces, what the

movement of traders is when they are faced with a variety of market mechanisms that are deployed

in these marketplaces, and what effect their movement has on the profits of those marketplaces.

4.2.1 Experimental setup

Traders, each using a trading strategy and a market selection strategy—one of those described

above—are not only learning how best to make offers, which they will have to do anew each

time they change marketplace, but they are also learning which marketplace has the best auction

mechanism for them. Of course, which marketplace is best will depend partly on the properties of

different marketplaces, but also on which other traders are in those marketplaces.

Marketplaces may levy charges on traders, as real marketplaces do. While we can set up

marketplaces to charge traders in a variety of ways, we have concentrated on charging traders a

proportion of the surplus on a transaction in which they are involved—the profit fee described in
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Section 4.1.3. We focus on this because it mirrors the case of the competition between the NSE and

the BSE [Shah and Thomas, 2000] where the BSE, had a much higher charge on transactions than

the new stock market.

In particular, we experimented with four basic charging policies, one fixed and three simple

adaptive policies:

• Fixed charging (GF)53 sets charges at a specified fixed level.

• Charge-cutting charging (GC) sets the charges by scaling down the lowest charges of mar-

ketplaces imposed on the previous day. This is based on the observation that all other things

being equal traders will prefer marketplaces with lower charges.

• Bait-and-switch charging (GB) makes a specialist cut its charges until it captures a certain

market share, and then slowly increases charges to increase profit. It will adjust its charges

downward again if its market share drops below a certain level.

• Learn-or-lure-fast charging (GL) adapts its charges towards some desired target following

the scheme used by the ZIP trading strategy. If the specialist using this policy believes that

the traders are still exploring among specialists and have yet to find a good one to trade in,

the specialist would adapt charges towards 0 to lure traders to join and stay; otherwise it

learns from the charges of the most profitable marketplace. GL uses an exploring monitor

component to determine whether traders are exploring or not. A simple exploring monitor,

for example, examines the daily distribution of market shares of specialists. If the distribu-

tion is flat, the traders are considered to be exploring, and otherwise not. This is based on

the observation that traders all tend to go to the best marketplace and cause an imbalanced

distribution. Another scheme for the exploring monitor, which we did not implement, is to
53The abbreviation follows the norm used in [Niu et al., 2008b]. Since CX is already used for market clearing

policies, we use GX to represent charging policies.
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check the trader distribution in the most recent days and use the relative market share gain

and loss to determine whether it is good at luring traders.

In common with much work in computational economics [Friedman, 1998], the strategies used

both by traders to choose between marketplaces and by marketplaces to decide how to charge

traders are very simple. Our choice of market strategies was driven by the desire to first establish

the relative performance of simple charging policies, and thus the basic structure of the problem of

competing marketplaces, before trying more complex policies.

Each of the experiments is setup to run for 200 or 400 trading days, with every day being split

into 10 rounds, each of which is one second long. The marketplaces are populated by 100 traders,

evenly split between buyers and sellers. Each trader is permitted to buy or sell at most one unit of

goods per day, and each trader has a private value for that good which is drawn from a uniform

distribution between $50 and $150.

4.2.2 Experimental results

Results are given in Figures 4.2a to 4.10d. These show values averaged over 100 runs of each

experiment.

Fixed-charge marketplaces

The first set of experiments explores the properties of marketplaces with fixed charges, respectively

20%, 40%, 60% and 80% of the surplus on a transaction. These marketplaces are denoted as M0.2,

M0.4, M0.6, and M0.8 respectively. Figures 4.2a and 4.2b show that traders that pick marketplaces

randomly have no discernable pattern of movement between the GF marketplaces, just as we would

expect. As a result, the marketplace with the highest charges makes the most profit. In contrast,

Figure 4.2c and 4.2d, when traders pick marketplaces based on their personal profits, they move
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towards the GF marketplace with lowest fixed costs. While GF marketplaces with high charges make

initial windfall profits, the trend is for the lower charging marketplace to gain greater cumulative

profit as the number of trading days increases.

Figures 4.3a–4.3d show that these results are robust against the ability of traders to make sen-

sible trades since broadly the same results are observed when some or all of the traders make their

bidding decisions randomly. Figures 4.4a–4.4d test the sensitivity of the results to the strategy that

traders use to learn which marketplace to choose. Decreasing ε over time (Figures 4.4a and 4.4b)

does not seem to have much effect, but switching to the softmax strategy (Figures 4.4c and 4.4d)

reduces the speed of convergence. The softmax strategy reduces the attractiveness of the lowest

charging marketplace since traders that do not pick it tend to pick marketplaces where they can

still make good profits and this reduces the incentive to pick M0.2.

The final results for the experiments with only fixed charges, Figures 4.5a–4.5d, show that

the results obtained so far are very sensitive to the length of time agents have to learn about the

marketplaces. When some traders start learning afresh every day, simulating traders leaving and

entering the marketplaces (4.5c and 4.5d), the lowest charging marketplace might still capture most

of the traders, but it captures less of them, and the remaining marketplaces attract enough traders

to have the same profit profile as when there is no learning (Figures 4.2a and 4.2b).

Thus, for the fixed charge marketplaces, provided that there is no turnover of traders, it is a

winning strategy to undercut the charges of the other marketplaces.

Homogeneous, adaptive-charge, marketplaces

Turning to the adaptive charging strategies, we first tested them against copies of themselves. In

these experiments we ran four copies of each kind of marketplaces against each other with different

initial profit charges, using the same values of the charges as we used in the experiments above. In
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(d) Cumulative profit.

Figure 4.2: Baseline experiments. GD traders, (a) and (b) with random market selection, (c) and
(d) with ε-greedy market selection (ε = 0.1, α = 1).
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(d) Cumulative profit.

Figure 4.3: Robustness experiments. (a) and (b) show ZI-C traders, and (c) and (d) show a mixture
of GD and ZI-C traders, all traders use ε-greedy market selection (ε = 0.1, α = 1).
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Figure 4.4: Learning experiments. GD traders, (a) and (b) with ε-greedy traders (ε = 1, α = 0.95),
(c) and (d) with softmax traders (τ = 1, α = 0.95).
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Figure 4.5: Population experiments. GD traders, all traders use ε-greedy market selection (ε = 0.1,
α = 1). In (a) and (b), all traders learn continuously through the experiment. In (c) and (d), 10%
of the traders re-start learning every day.

each experiment we also provided a “null” marketplace, denoted as Mnull , which made no charges

and executed no trades—the idea of this is to allow traders who cannot trade profitably to have

a mechanism for not trading—and, for completeness, carried out the same experiment with the

GF marketplaces. For all of these experiments, and all subsequent experiments, we used traders

that made bids using GD, that selected marketplaces using an ε-greedy policy, and that continued

learning for all 400 days. The results of these experiments can be seen in Figures 4.6a to 4.7d.

The GF marketplaces, in Figures 4.6a and 4.6b, attract fewer traders in the presence of the null

marketplace, but make similar profits (since the traders who tend to the null marketplace do not

often trade). The charge-cutting or GC marketplaces in Figures 4.6c and 4.6d, get into a price war

which they do not have the intelligence to get out of, and the bait-and-switch or GB marketplaces

(Figures 4.7a and 4.7b) are similarly unable to generate a significant profit. The learn-or-lure-fast

or GL marketplaces, in Figures 4.7c and 4.7d, adjusting their profit margins to fit what the traders

will allow, manage to do better, but generate nowhere near as much profit as the GF marketplaces

do.
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Figure 4.6: Homogeneous marketplaces: GF marketplaces and GC marketplaces. GD traders, all
traders use ε-greedy market selection (ε = 0.1, α = 1). (a) and (b) are four homogeneous GF

marketplaces, (c) and (d) are four homogeneous GC marketplaces.
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Figure 4.7: Homogeneous marketplaces: GB marketplaces and GL marketplaces. GD traders, all
traders use ε-greedy market selection (ε = 0.1, α = 1). (a) and (b) are four homogeneous GB

marketplaces, (c) and (d) are four homogeneous GL marketplaces.

Heterogeneous, adaptive-charge, marketplaces

While the homogenous marketplace experiments give some idea of market performance, it is more

interesting to examine how the adaptive charging strategies work in competition against one an-

other. To explore this, we carried out a series of mixed marketplace experiments along the lines

of the trading strategy work of [Tesauro and Das, 2001]. For each of the adaptive charging poli-

cies, we ran an experiment in which all but one marketplace used that policy and the remaining

marketplace used another policy, carrying out one such “one-to-many” experiment for each of the
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Table 4.1: Results of one-to-many experiments. For each experiment, the table gives the cumu-
lative profit of the “one” policy vs. the cumulative profit of the best of the “many” over a certain
period of time during the experiment, and shows whether the “one” is greater or less than the
“many” at the 90% confidence level, determined by a t-test. Standard deviations are shown in
italics.

(a) Cumulative profit over all days only.

Many GC Many GB Many GL

One GC - 0.8 < 84.1 6502.2 > 6043.6
7.5 105.6 1527.1 2159.7

One GB 82.0 > 0.7 - 6545.7 > 5743.8
56.7 6.8 2325.0 1581.8

One GL 2289.6 > 0.8 1773.5 > 166.9 -
1118.9 8.5 633.0 264.8

(b) Cumulative profit over the last 100 days.

Many GC Many GB Many GL

One GC - 0.0 < 7.2 1727.5 > 1475.3
0.0 33.5 438.8 610.6

One GB 5.9 > 0.0 - 2048.0 > 1397.7
40.2 0.0 829.3 432.1

One GL 206.1 > 0.0 147.2 > 70.2 -
173.4 0.0 54.4 227.6

other policies. In other words, we tested every “one-to-many” combination of the adaptive strate-

gies. For all of these experiments, we measured the cumulative profit of a marketplace using the

charging policies and ran the marketplaces alongside the same null marketplace as before. As in

the experiments with homogeneous, adaptive-charge, marketplaces, there are in total four market-

places besides the null one, and the one-to-many ratio is always 1 : 3. The similar configurations

make it possible to compare the results of the two sets of experiments.

Table 4.1a gives the results of “one-to-many” experiments, giving the cumulative profits of the
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“one” marketplace against the best performing “many” marketplace for each combination of the

adaptive marketplaces. The table also indicates which profit is the greater at the 90% confidence

level (as determined by a t-test). “>” means the “one” marketplace is better than the best “many”

marketplace at the 90% confidence level and “<” means the best “many” marketplace is better. The

day by day results are also given in Figures 4.8a-4.10d. The results show that one GC marketplace

is effective against many GL marketplaces, since it can capture more traders, as Figure 4.9a shows.

In such a case, both types of marketplace generate good profits. However, when there is more than

one GC, such marketplaces get into a price war and drive their charges down to zero.

The GB policy was envisaged as a more sophisticated version of GC, one that exploited its

market share by increasing charges on traders it had attracted through low charges. The results

in Table 4.1a suggest that GB achieves this intention, outperforming GC both when one GB takes

on multiple GCs, and when a single GC competes against multiple GB marketplaces. However, as

is the case with GC, when there is more than one marketplace using GB, they may end up cutting

charges in a futile attempt to increase market share and hence do not make much profit—this is

what happens when there are many GB marketplaces running against a single GL marketplace.

The GL policy, designed to get out of price wars by increasing charges when it can, performs

well against both GC and GB marketplaces when it is in the minority. When there is only one GC

or GB against many GL marketplaces, the GC and GB may outperform GL. However, even when this

is the case, as Figure 4.9b and Figure 4.10b show, GL can still make more profit than the other

policies in the short run (before 200 days have elapsed).

The results in Table 4.1a are cumulative over the entire 400 days of the experiment. Since the

early days of the experiment often contain a lot of noise from the initial exploration of the traders,

it is interesting to also look at the profits over just the later stages of the experiments, when trader

movement has settled down. Such results are presented in Table 4.1b. These results suggest that
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when it is in the majority, the GL strategy is clearly outperformed by both a single GC and a single

GB marketplace. Since Figures 4.9a and 4.10a suggest that there is no longer much movement of

traders at this point, the results in Table 4.1b simply reinforce those in Table 4.1a.

In our experiments described above, market performance depends on the mix of market strate-

gies being considered. This suggests that, as is the case for trading strategies [Tesauro and Das,

2001], it may be difficult to find a dominant strategy for deciding market charges, though such a

conclusion must wait until market strategies have been investigated further. This is particularly

important since the strategies that we have considered were, quite intentionally, about the simplest

we could imagine (starting with simple strategies seemed a good way to understand the problem

we are considering).

Some of the experimental results might look obvious, but they are useful in validating the

design of the CAT game and the implementation of JCAT. In addition, the results obtained with

marketplaces that adopt simple auction mechanisms build a solid foundation for understanding the

much more complicated interaction between specialists in the actual CAT tournaments.
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Figure 4.8: Heterogeneous marketplaces: GC against GB. GD traders, all traders use ε-greedy mar-
ket selection (ε = 0.1, α = 1). In (a) and (b) one GC marketplace (solid line) competes with three
GB marketplaces, in (c) and (d), one GB marketplace (solid line) competes with three GC market-
places.
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Figure 4.9: Heterogeneous marketplaces: GC against GL. GD traders, all traders use ε-greedy market
selection (ε = 0.1, α = 1). In (a) and (b) one GC marketplace (solid line) competes with three GL

marketplaces, in (c) and (d), one GL marketplace (solid line) competes with three GC marketplaces.
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Figure 4.10: Heterogeneous marketplaces: GB against GL. GD traders, all traders use ε-greedy
market selection (ε = 0.1, α = 1). In (a) and (b) one GB marketplace (solid line) competes with
three GL marketplaces, in (c) and (d), one GL marketplace (solid line) competes with three GB

marketplaces.



Chapter 5
An analysis of entries in the First TAC Market

Design Tournament

The previous chapter introduced CAT games and showd that the migration of trading agents with

simple reinforcement learning capabilities can effectively distinguish marketplaces that differ in

charging policies they adopt. This suggests that CAT games can be used to evaluate auction mech-

anisms in a competing environment.

More specifically, CAT games enable us to do two things:

1. to zoom in on the detailed interaction between competing marketplaces and trading agents,

and examine, through the dynamic movement of trading agents in particular, how a com-

bination of auction rules, each regulating one aspect of a market, work together to form an

effective mechanism; and

2. to zoom out, viewing a complete CAT game as an atomic interaction between marketplaces,

and examine how a market mechanism can win out in the long run through repeated games.

These two perspectives are actually akin to white-box testing and black-box testing in software

69
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engineering. As the two testing methods complement each other to produce correct code, the two

perspectives above together help to evaluate the effectiveness of auction mechanisms, identify the

weaknesses, and make further improvements.

5.1 Strategy evaluation in competitive games

Trading competitions like CAT games have been an effective tool in fostering innovative approaches,

creating enthusiasm, and advocating exchange among researchers [Stone and Greenwald, 2005;

Wellman et al., 2003]. However, the competitions themselves usually cannot provide a complete

view of the relative strength and weakness of entries. In a competition, the performance of one

player closely depends upon the composition of its opponents and the competition configuration,

and the scenarios considered are usually limited. Thus we typically turn to post-competition anal-

ysis to scrutinize the design of each entry.

Ideally, such an analysis will cover all possible scenarios, but this usually presents too large

a possible space. As a result, a common practice is to deliberately select a limited number of

representative strategies and run games corresponding to a set of discrete points or trajectories in

the infinite space, assuming that the results are representative of what would happen in the whole

space were one to explore it [Sodomka et al., 2007].

There are two common types of approaches to post-competition analysis: white-box approaches

and black-box approaches. A white-box approach attempts to relate the internal logic and features

of strategies to game outcomes. In the Santa Fe Double Auction Tournament and post-tournament

experiments [Rust et al., 1993], a thorough examination of auction efficiency losses indicated that

the success of the KAPLAN trading strategy was due to its patience in waiting to exploit other

trading strategies. In Axelrod’s Computer Prisoner’s Dilemma Tournament [Axelrod, 2006], the

strong showing of TIT FOR TAT was attributed to the fact that it was forgiving as well as being
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cooperative. While a white-box approach is often domain-dependent, the insights obtained in the

domain of interest may still be extended to other domains. For instance, the payoff structure in the

Iterated Prisoner’s Dilemma problem captures the nature of many other issues that are faced by

parties with conflicting interests.

A black-box approach, on the other hand, considers strategies as atomic entities. One perspec-

tive is an ecological one based on replicator dynamics, from which the entities are biological in-

dividuals in an infinitely large population and a sub-population playing a particular strategy grows

in proportion to how well that strategy performs relative to the whole population on average [Fu-

denberg and Levine, 1998]. Examples include some work that were introduced in Chapter 3.

Walsh et al. [Walsh et al., 2002] combined the game-theoretic solution concept of Nash equilib-

rium and replicator dynamics, turning a potentially very complex, multi-stage game of trading

strategies into a one-shot game in normal form, and used perturbation analysis to evaluate whether

a strategy can be improved further. Phelps et al. [Phelps et al., 2005, 2006] and Schvartzman and

Wellman [Schvartzman and Wellman, 2009b] successfully applied this approach in acquiring bet-

ter trading strategies for DA markets, a variant of RE and a variant of GD respectively. Jordan et

al. [Jordan et al., 2007] took a similar approach to the evaluation of entries in TAC SCM and other

games [Jordan and Wellman, 2007].

This chapter introduces our work in taking both a white-box approach and a black-box ap-

proach to the analysis of the entries to the First CAT Tournament (CAT 2007) that are available

in the TAC agent repository.54 The results of this work have been published in [Niu et al., 2008b]

(white-box) and [Niu et al., 2008a] (black-box) respectively. In the white-box analysis, we at-

tempted to relate market dynamics to the auction rules adopted by these entries and their adaptive

strategies via a set of post-tournament experiments. Based on this analysis, we speculated about

the design of effective auction mechanisms, both in the setting of the competition and in the more
54http://www.sics.se/tac/showagents.php.

http://www.sics.se/tac/showagents.php
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general case. In the black-box analysis, we examined the relative strength and weakness of the

specialist agents across several scenarios, which demonstrated some vulnerabilities of entries that

placed highly in the competition.

5.2 A white-box analysis of CAT 2007 entries

We ran a series of games with the same setup as in the CAT 2007 games.55 Every game in our

experiment ran for 500 trading days with 10 rounds per day and 1 second per round. The trader

population comprised 180 ZIP traders, 180 RE traders, 20 ZI-C traders, and 20 GD traders. Buyers

and sellers were evenly split in each trader sub-population. The private values of all the traders

were independently drawn from a uniform distribution between $50 and $150, and each trader was

allowed to buy or sell up to three units of a commodity per day. The specialists in our games

include all eight of the 2007 specialists that have been released in the TAC agent repository. The

same scoring criteria were used as in the competition, which have been described in Section 4.1.4,

but, unlike the competition, all the game days were assessed. The results and plots shown below

were averaged over a total of ten games. To obtain a clearer view, plots were smoothed out with

each datum being the average of a ten-day sliding window around it.

The results of our experiments broadly agree with the rankings in the competition.56 The CAT

2007 champion, IAMwildCAT, still wins in our experiments and PSUCAT, which placed second

in the competition, comes second as shown in Table 5.1. The only changes in ranking are due

to TacTex and MANX increasing their scores over what they achieved in the competition since they

could participate in every game. In CAT 2007 both missed part of the competition due to unexpected

travel delays.

55Subsequent to the analysis undertaken here, two teams have reported on their specialist strategies [Petric et al.,
2008; Vytelingum et al., 2008b].

56http://www.marketbasedcontrol.com/blog/index.php/?p=30.

http://www.marketbasedcontrol.com/blog/index.php/?p=30


CHAPTER 5. AN ANALYSIS OF ENTRIES IN THE FIRST TAC MARKET DESIGN TOURNAMENT 73

Table 5.1: The scores of specialists from CAT 2007 in the post-tournament experiments.

Specialist Score SD

IAMwildCAT 240.22 2.82
PSUCAT 209.26 12.01
CrocodileAgent 179.64 17.53
jackaroo 182.80 24.30
PersianCat 128.82 5.57
Mertacor 100.11 8.57
TacTex 166.66 8.99
MANX 140.09 31.03

Among many other things that we reported in [Niu et al., 2008b], the migration of intra-

marginal traders and extra-marginal traders reflects the competition among specialists. Traders

migrate based on estimates of expected profits, where the estimate for trading with a given special-

ist is based on past experience with that specialist. Generally speaking, the more intra-marginal

traders and the fewer extra-marginal traders in a marketplace, the more potential profit there is, and

the easier it is to make transactions and achieve a high transaction success rate. The intuitive way

to explore how the intra-marginal and extra-marginal traders move between the marketplaces is to

look at the snapshots of supply and demand in the marketplaces. Figure 5.1 illustrates the supply

and demand curves on six selected days in one of the ten games (from left to right in each row,

days 0, 50, 100, 150, 300, and 499) for three of the eight marketplaces, IAMwildCAT, PersianCat,

and MANX. The curves show different trends in the three marketplaces. IAMwildCAT attracted an

increasing number of intra-marginal traders, which at the end of the game account for almost two

thirds of the intra-marginal traders in the global market.57 PersianCat basically did the opposite,

57Due to the uniform distribution of private values, the number of intra-marginal traders and the number of extra-
marginal traders in a game are basically same, around 100. As each trader is entitled to trade up to three units of
goods with its assigned private value, the intra-marginal supply/demand and the extra-marginal supply/demand in the
global market are about 300 units of goods apiece. Figure 5.1 shows that almost 200 units of supply/demand in the
marketplace of IAMwildCAT are on the intra-marginal side, which is about two thirds of the global intra-marginal
supply/demand.
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Figure 5.1: Supply and demand curves for individual marketplaces over time. Each graph has
quantity on the x-axis and price on the y-axis. The leftmost graph gives supply and demand on
day 0, and the remaining graphs in each row are those from days 50, 100, 150, 300, and 499
respectively. These graphs are from the same single run of the game.

with more extra-marginal traders and fewer intra-marginal traders coming in. MANX maintained a

balanced supply or demand between the intra-marginal side and the extra-marginal side, though

supply and demand on both sides shrank by 50% approximately at the end of the game. Though the

supply and demand curves are intuitive in exhibiting the profitabilities of different marketplaces, it

would be better to have a metric that makes it possible to compare the profitabilities quantitatively

in a succinct way. To this end, we introduce the marginal coefficient, β , to measure the balance of

intra-marginal and extra-marginal supply and demand. For demand,

βD =
Di

Di +De
(5.1)
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where Di is the intra-marginal demand—the equilibrium—and De is the extra-marginal demand.

The marginal coefficient for supply, βS, can be defined similarly. βD varies between 0 and 1. A

value of 0 indicates that all the buyers in the market are extra-marginal while 1 indicates that all the

buyers are intra-marginal. Figure 5.2a shows the daily value of βD in the individual marketplaces

managed by the specialists.

As Figure 5.2a shows, βD is approximately 0.5 in all the marketplaces when the game starts.

Then βD of IAMwildCAT, TacTex, and PSUCAT increases while that of CrocodileAgent, Per-

sianCat, and Mertacor decreases. Since a falling βD indicates losing intra-marginal traders

and/or gaining extra-marginal traders, these changes indicate that intra-marginal traders and extra-

marginal traders have different preferences over the different marketplaces.

A close examination of Mertacor’s mechanism found that it strategically executes extra-

marginal trades so as to increase its transaction success rate, and it has a bug leading to unrealized

intra-marginal trades. These two issues are further confirmed by the low allocative efficiency of

Mertacor, shown in Figure 5.2b, and provide sufficient ‘excuse’ for intra-marginal traders to flee.

PersianCat and CrocodileAgent both lose traders due to imposing high profit charges. Per-

sianCat charges 100% on profit for the whole game, and this drives βD down very quickly.

CrocodileAgent levies a lower fee than PersianCat and therefore has a modestly decreasing

βD. The decrease of βD in PSUCAT and jackaroo starting from days 250–300 follows the aggres-

sive increase in the profit fee.

The rest of the specialists have much higher βD despite their use of similar policies. IAMwild-

CAT, for instance, though adopting a matching component similar to the one used in Mertacor,

refrains from using it in the early rounds of a day, which are usually sufficient to realize most intra-

marginal trades. MANX, though levying a high, yet volatile, profit fee, also levies other fees with-

out bias considerations, which together scare away both extra-marginal traders and intra-marginal
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traders at approximately the same pace. Its βD therefore zigzags around 0.5. The three specialists

that obtain a βD higher than 0.6 during the most time of the game, IAMwildCAT, PSUCAT, and

TacTex, all generate allocative efficiency higher than 85%, again suggesting the importance of

matching policies in keeping a high-quality trader population.

The white-box analysis in [Niu et al., 2008b] presented a complete view of the interaction

dynamics in the post-tournament experiments and speculated about effective auction mechanisms

both for CAT games and for more general cases. This section aims to give a taste of this type of

analysis. The white-box analysis, together with the black-box analysis that is to be presented in the

next section, inspired the work of the grey-box approach to automated auction mechanism design,

which will be introduced in Chapter 6 and is the major piece of this dissertation.

5.3 A black-box analysis of CAT 2007 entries

The above white-box analysis is feasible only when the internal structure of a mechanism is known

and can only be conducted in a very limited number of scenarios because this analysis requires a

thorough, manual examination of game dynamics. A black-box analysis abstracts away the internal

structure of a mechanism and many details of the dynamics during the interaction of strategies,

making it possible to consider many more scenarios. However, it may still involve high complexity.

This is due to the fact that a game may have an arbitrary number of players and an arbitrary number

of strategies. The results of n-player, m-strategy games may not necessarily agree with the results

of (n+ 1)-player, m-strategy games, or n-player, (m+ 1)-strategy games. For instance, player A

beating player B in a bilateral game does not necessarily imply that A would still beat B when an

additional player C is added, no matter whether C uses either of the strategies used by A and B,

or a third, new strategy. This difficulty suggests, for example, that the replicator dynamics fields

reported in [Phelps et al., 2006] based on 6-agent auction games or in [Jordan et al., 2007] based
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on 6-agent TAC SCM games may possibly change when a different set of game profiles are used to

approximate the interaction of a player population with a certain composition of strategies.

To shed more light on the interaction of possible scenarios and limit the possible distortion

brought by the sampled game profiles, we ran two sets of experiments to analyze entries to CAT

2007: multi-lateral simulations with games involving all the entries and bilateral simulations with

games each involving two specialists. The two sets of experiments can be viewed as the two ends

of a spectrum along which the number of players and strategies in a game varies.

The simulations were inspired by the experiments conducted by Axelrod [Axelrod, 2006] and

Rust et al. [Rust et al., 1993], in which more copies of successful strategies, and less copies of

unsuccessful strategies were run for each successive game. Following Axelrod, the simulations

that are reported here are called ecological simulations.

In the multi-lateral games, we could run a large population of specialists in each game and

adjust the presence of different types of specialist in the population in the ecological way. However,

constrained by the number of specialists that we could practically have in a single CAT game, we

instead modified each strategy’s playing time in proportion to its score.58 That is, in a game that

included all specialists, we decreased the number of trading days for less successful strategies, and

increased the days for more successful strategies. Figure 5.3a shows the result of this simulation.

The distribution on the y-axis gives the proportion of the total number of trading days for all

specialists that are allotted to each specialist. Figure 5.3a demonstrates that

58Our experiments ran on a Linux cluster where a single run of a game is confined to a single host. That is, all
the specialists and traders have to share the resources of the single host. Each specialist or trader runs as a thread,
each thread requires a certain mount of memory, and we found that the total number of threads that can run smoothly
without crashing the machine was about 750. As we typically run 15 or more traders per specialist in a game to
obtain reliable and stable results, 750 traders means that we can run at most 50 specialists in a game, which is not
sufficient for an ecological experiment that involves eight different types of specialist. Therefore, instead of running
a large population of specialists and adjusting the presence of different types of specialist in the population, we ran
games that always involve exactly eight specialists, one for each type, and we limited the number of days on which a
specialist is available for traders to choose. The number of days is proportional to the share of the type of specialist in
the population.
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Table 5.2: The payoff matrix of bilateral CAT games between CAT 2007 entries. Entry (i, j) is the
payoff of specialist i in the game against specialist j and entry ( j, i) is the payoff of specialist j in
the same game.

Specialist IAM PSU jack Croc MANX Tac Pers Mert

IAMwildCAT 0.6568 0.7207 0.6793 0.7681 0.7070 0.8008 0.6145 0.7632
PSUCAT 0.5687 0.6152 0.5534 0.6950 0.6121 0.6420 0.7409 0.8307
jackaroo 0.5926 0.6989 0.6279 0.7537 0.7088 0.7839 0.6902 0.8602
CrocodileAgent 0.5245 0.5420 0.5145 0.4865 0.4614 0.6210 0.5879 0.7257
MANX 0.5930 0.6067 0.5790 0.5101 0.6434 0.7150 0.6166 0.6944
TacTex 0.4123 0.5743 0.4344 0.6271 0.5369 0.5546 0.6126 0.7238
PersianCat 0.6200 0.5155 0.5925 0.7041 0.6686 0.6399 0.6446 0.7710
Mertacor 0.3831 0.2947 0.3172 0.5068 0.4026 0.4479 0.4650 0.5503

• the results of this analysis agree with the results we obtained in the white-box analysis, again

confirming that IAMwildCAT was the strongest entry in the 2007 competition; and

• the days allotted to PersianCat shrink more slowly than those allotted to other losing spe-

cialists. This agrees with the results of bilateral games between IAMwildCAT and Persian-

Cat (described below) and suggests that PersianCat was a strong entry, stronger than its

overall position suggests.

One-on-one games closely examine the strength and weakness of a specialist when it faces

different opponents. As a result, we ran 64 experiments in total between the eight specialists. Eight

of these are self-play games. Table 5.2 shows the resulting payoffs of specialists—their average

daily scores—in these CAT games, averaged over ten runs. Entry (i, j) is the payoff of specialist

i in the game against specialist j and entry ( j, i) is the payoff of specialist j in the same game.

IAMwildCAT, the CAT 2007 champion, surprisingly loses, albeit narrowly, against PersianCat,

which placed sixth in the competition. This provides an explanation for the fact that in Figure 5.3a

the days for PersianCat shrink more slowly than those for other specialists—it does well against
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the increasingly dominant IAMwildCAT. IAMwildCAT’s loss, given the defeat of PersianCat by

PSUCAT and jackaroo, suggests that IAMwildCAT has some particular weakness that happened to

be taken advantage of by PersianCat.

A close look at the bilateral game between IAMwildCAT and PersianCat reveals that Per-

sianCat charges 100% fee on profit and no other kinds of fees all the way through the game.

Although this scares away intra-marginal traders gradually, it helps to attract extra-marginal ones,

which do not usually make profit in either marketplace and would have to pay registration fee if

they stay with IAMwildCAT. As a result, PersianCat is able to maintain a market share comparable

to IAMwildCAT. Meanwhile, IAMwildCAT does not charge anything during the beginning phase of

a game and charges only modestly for most of the time afterwards—less than a 1% fee on profits.

In a bilateral game, PersianCat can exploit this. Even though its high fees will tend to drive

away traders, it will still attract enough traders to make a decent share of the total profits. In

contrast, the effect of the greediness of PersianCat is diluted in the more crowded multi-lateral

games,59 where some of the traders who do not choose IAMwildCAT choose marketplaces other

than PersianCat.

The payoff table for the bilateral CAT games can be used to approximate ecological dynamics

for populations involving more than two specialist types. The payoff of each specialist type for

a certain population mixture is computed as the expected payoff for this specialist assuming that

each specialist obtains the payoff it would have obtained had it competed one-on-one with each

of the other specialists in the mix. Under this assumption, Figure 5.3b shows how a population

that starts with an even distribution of specialists evolves over time when, as in [Axelrod, 2006],

every specialist plays against every other specialist in every generation in bilateral games, and the

number of specialists in any generation is proportional to the payoff achieved by that “breed” of

59In the CAT 2008 tournament, PersianCat charged at a much lower level, adopted a better shout improvement
rule based on the one presented in [Niu et al., 2006], and won the game.
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specialist in the previous generation.

Comparing Figure 5.3b with Figure 5.3a, shows that while the winning strategies are the same,

the ecological simulations based on multi-lateral games converge much faster than those based on

bilateral games (the scales on the x-axis are very different in the two plots). This may be explained

by the fact that bilateral games give strategies a chance to benefit from the ability to perform

well against specific opponents, whereas in the multi-lateral games they have to be good against

all opponents in order to survive. Another noticeable phenomenon is that PSUCAT performs much

worse in the simulations with bilateral games than those with multi-lateral games, while jackaroo

and IAMwildCAT do the opposite. These discrepancies indicate that, as one might expect, different

game setups may lead to very different results. However, our results may be helpful to identify the

weakness in strategies by looking at the particular scenario in which a strategy performs poorly.

Similar to the previous section, this section aims to describe briefly a piece of work that in-

spired the work of the grey-box approach to automated auction mechanism design that will be

introduced in the next chapter. The ecological analysis of auction mechanisms in particular leads

to the handling of components of auction mechanisms in an ecological manner in the grey-box

approach.
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(b) Based on bilateral CAT games and over 100 generations.

Figure 5.3: The distribution of specialists over generations in the ecological simulations of CAT
2007 entries, starting from an event distribution. Note that the scales on the x-axis are very dif-
ferent in the two plots. The population of specialists in the multi-lateral simulation (a) becomes a
homogeneous IAMwildCAT one after evolving for 10 generations,a so the simulation stops, while in
the bilateral simulation (b) the population will never become a homogeneous one as the population
is assumed to be infinitely large and there are no truncation issues.

aThe scores of other types of specialist are too low for them to participate in the game even for a single day.



Chapter 6
Automated auction mechanism acquisition

through CAT games

The white-box analysis and the black-box analysis in the previous chapter make a good combina-

tion for examining the strengths and weaknesses of entries in the CAT 2007 games. Both approaches

have advantages and disadvantages. The white-box approach is capable of relating the internal de-

sign of an auction mechanism to its performance and revealing which part of the design may cause

vulnerabilities, but it requires knowledge of the internal structure of the mechanism and involves

manual examination. The black-box does not rely upon the accessibility of the internal design of a

mechanism. It can be applied to virtually any strategic game, and is capable of evaluating a design

in many more situations, e.g., facing different sets of opponents. However, the black-box approach

tells us little about what may have caused a strategy to perform poorly and provides little in the

way of hints as to how to improve the strategy. It is desirable to combine these two approaches in

order to benefit from the advantages of both. Following the GA-based approach to trading strategy

acquisition and auction mechanism design in [Cliff, 2003; Phelps et al., 2006, 2003], we propose

what we call a grey-box approach to automated mechanism design that combines the white-box

83
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approach and the black-box approach, and solves the problem of automatically creating a complex

mechanism by searching a structured space of auction mechanisms extending the parameterized

framework in [Wurman et al., 2001].

6.1 A grey-box approach to automated auction mechanism de-

sign

In the white-box analysis of the CAT entries, we look inside the auction mechanisms and try to

relate each component of a mechanism to a specific part of the behavior of the mechanism. In the

black-box approach, we do not care about the internals of the mechanism and instead just look at

the conditions (in terms of its competitors in the game). To augment this work, we propose a grey-

box approach in which we concentrate on the components of the mechanisms (as in the white-box

approach), but take a black-box view of the components, evaluating their effectiveness by looking

at their performance against that of their peers.

More specifically, we view a market mechanism as a combination of auction rules, each as an

atomic building block. We consider the problem: how can we find a combination of rules that is

better than any known combination according to a certain criterion, based on a pool of existing

building blocks? The black-box analysis in the previous chapter maintains a population of auction

mechanisms and evolves them generation by generation based on their fitnesses. Here we intend to

follow a similar approach. In the grey-box analysis, we maintain a population of building blocks,

associate each block with a quality score, which reflects the fitnesses of auction mechanisms using

this block, explore more in the part of the space of auction mechanisms that involves building

blocks of higher quality, and keep the best mechanisms we explored through the process.

The following sections discuss issues involved in this method in more detail.
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6.2 A search space of double auctions

The first two issues we need to address are what composite structure is used to represent auction

mechanisms? and where can we obtain a pool of building blocks?

Viewing an auction as a structured mechanism is not a new idea. Wurman et al. [Wurman et al.,

2001] introduced a conceptual, parameterized view of auction mechanisms, which was described in

Section 3.3.1. Our prior work on analyzing CAT entries [Niu et al., 2008b] extended this framework

for auction mechanisms competing in CAT games and provided a classification of entries in the first

CAT competition that was based upon it. The extended framework includes multiple intertwined

components, or policies, each regulating one aspect of a marketplace.60 We adopt this framework,

include more candidates for each type of policy, and take into consideration parameters that are

used by these policies.

These policies were either inferred from the literature, e.g. [McCabe et al., 1993; Wurman

et al., 1998], or from our previous work [Niu et al., 2008a,b, 2006; Niu and Parsons, 2011], or

contributed by entrants to the CAT competitions. These policies, each as a building block, form a

solid foundation for the grey-box approach.

Figure 6.1 illustrates the building blocks as a tree structure. We describe these building blocks

in detail below and discuss how we search the space based on the tree structure in the next section.

60In the context of CAT games, there are different types of decision making. We deliberately distinguish them
by using different terms, which though may have similar meanings or each alone be interpreted in different ways in
everyday English. We say that trading agents in a market use trading strategies to make an offer and market selection
strategies to choose a marketplace; we refer to overall forms of auction as mechanisms; and we call individual rules in
a mechanism—essentially those we enumerate in Section 6.2—building blocks, components, or policies.
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6.2.1 Matching policy

Matching policies, denoted as M in Figure 6.1, define how a market matches shouts made by

traders.

Equilibrium matching (ME) is the most commonly used matching policy [McCabe et al., 1993;

Wurman et al., 1998]. It clears the market at the reported equilibrium price and matches intra-

marginal asks with intra-marginal bids.

Max-volume matching (MV) [Niu and Parsons, 2011] aims to increase transaction volume based

on the observation that a high intra-marginal bid can match with a lower extra-marginal ask, though

with a profit loss for the buyer. It does so to realize the maximal transaction volume that is possible.

A generic, parameterized, matching policy can be defined to include ME and MV as two special

cases. This policy, denoted as MT [Niu and Parsons, 2011], uses a parameter, θ , which can be any

value in [−1,1]. When θ is −1, MT does not match any shout; when θ is 0, MT becomes ME; and

when θ is 1, MT becomes MV. For any other values of θ , MT tries to realize a transaction volume

that is proportional to 0 and those realized in ME and MV.

6.2.2 Quote policy

Quote policies, denoted as Q in Figure 6.1, determine the quotes issued by markets. Typical

quotes are ask and bid quotes, which respectively specify the upper bound for asks and the lower

bound for bids that may be placed in a quote-driven market.

Two-sided quoting61 (QT) defines the ask quote as the minimum of the lowest tentatively match-

able bid and lowest unmatchable ask and defines the bid quote as the the maximum of the highest

tentatively matchable ask and highest unmatchable bid.

61The name follows [McCabe et al., 1993] since either quote depends on information on both the ask side and the
bid side.
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One-sided quoting (QO) is similar to QT, but considers only the standing shouts closest to the

reported equilibrium price from the unmatchable side. When the market is cleared continuously

(see below), QO is identical to QT, but otherwise forms a possibly looser restriction on placing

shouts.

Spread-based quoting (QS) extends QT to maintain a higher ask quote and a lower bid quote for

use with MV. With QS, when the ask quote is lower than the bid quote, the former is set somewhere

above their average and the latter below the average, and the spread between the two is a fixed

value. QS helps relax the constraint put on shouts with too low an ask quote and too high a bid

quote.

6.2.3 Shout accepting policy

Shout accepting policies, denoted as A in Figure 6.1, judge whether a shout made by a trader

should be permitted in the market.

Always accepting (AA) accepts any shout, and never accepting (AN) does the opposite.

Quote-beating accepting (AQ) allows only those shouts that are more competitive than the

corresponding market quote. This has been commonly used in both experimental settings and real

stock markets, and is exactly the NYSE shout improvement rule that was mentioned in Section 2.3.

Self-beating accepting (AS) accepts all first-time shouts but only allows a trader to modify its

standing shout with a more competitive price.

Equilibrium-beating accepting (AE) learns an estimate of the equilibrium price based on the

past transaction prices in a sliding window, and requires bids to be higher than the estimate and

asks to be lower. AE uses a parameter, w, to specify the size of the sliding window in terms of the

number of transactions, and a second parameter, δ , which can be added to the estimate to relax the

restriction on shouts. This policy was suggested in [Niu et al., 2006] and found to be effective in
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reducing transaction price fluctuation and increasing allocative efficiency in markets populated by

ZI-C traders.

A variant of AE, denoted as AD and introduced by the PSUCAT team in the first CAT competition,

uses the standard deviation of transaction prices in the sliding window rather than a constant δ to

relax the restriction on shouts.

History-based accepting (AH) is derived from the GD trading strategy [Gjerstad and Dickhaut,

1998] and we found it to be a crucial component of one particular strong market mechanism for

CAT games [Niu et al., 2008a]. GD computes how likely a given offer is to be matched, based on

the history of previous shouts, and AH uses this same probability computation to accept only shouts

that will be matched with probability no lower than a specified threshold, τ ∈ [0,1].

Transaction-based accepting (AT) tracks the most recently matched asks and bids, and uses the

lowest matched bid and the highest matched ask to restrict the shouts to be accepted. In a CH, the

two bounds are expected to be close to the estimate of equilibrium price in AE, while in a CDA, AT

may produce much looser restriction since extra-marginal shouts may steal a deal.

Shout type-based accepting (AY) allows shouts based merely on their types, i.e. asks or bids.

This mimics the continuum of auctions presented in [Cliff, 2001a], including retailer markets

where only sellers shout, procurement auctions where only buyers shout, as well as general double

auctions.

6.2.4 Clearing condition

Clearing conditions, denoted as C in Figure 6.1, define when to clear the market and execute

transactions between matched asks and bids.

Continuous clearing (CC) attempts to clear the market whenever a new shout is placed.

Round clearing (CR) clears the market after all traders have submitted their shouts. This was
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the original clearing policy in NYSE, but was replaced by CC later for faster transactions and higher

volumes. With CC, an extra-marginal trader may have more chance to steal a deal and get matched.

Probabilistic clearing (CP) clears the market with a predefined probability, p, whenever a shout

is placed. It thus defines a continuum of clearing rules with CR (p = 0) and CC (p = 1) being the

two ends.

6.2.5 Pricing policy

Pricing policies, denoted as P in Figure 6.1, set transaction prices for matched ask-bid pairs. The

decision making may involve only the prices of the matched ask and bid, or more information

including market quotes.

Discriminatory k-pricing (PD) sets the transaction price of a matched ask-bid pair at some

point in the interval between their prices. The parameter k ∈ [0,1] controls which point is used and

usually takes value 0.5 to avoid a bias in favor of buyers or sellers.

Uniform k-pricing (PU) is similar to PD, but sets the transaction prices for all matched ask-bid

pairs at the same point between the ask quote and the bid quote. A transaction price set by PU

may or may not fall into the range between the matched ask and bid, depending upon the matching

policy and the quote policy in the auction mechanism. When it falls outside, whichever of the ask

and the bid is closer to the computed transaction price will be used as the final transaction price.

n-pricing (PN) is a pricing policy that we introduced in [Niu et al., 2006] to set the transaction

price as the average of the latest n pairs of matched asks and bids. If the average falls out of

the price interval between the ask and bid to be matched, the nearest end of the interval is used.

We found that this policy can help reduce transaction price fluctuation and has little impact on

allocative efficiency.

Side-biased pricing (PB) is basically PD with an internal k dynamically adjusted so as to split
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the profit in favor of the side on which fewer shouts exist. Thus the more that asks outnumber bids

in the current market, the closer k is set to 0.

6.2.6 Charging policy

Charging policies, denoted as G in Figure 6.1, determine the charges imposed by a market.

This is typically not an issue in research on auctions in isolation, but would affect the selection

of marketplaces by traders directly in an environment of multiple competing marketplaces, each

associated with an auction mechanism, as in CAT games. The four charging policies introduced

in Section 4.2.1—Fixed charging (GF), Charge-cutting charging (GC), Bait-and-switch charging

(GB), and Learn-or-lure-fast charging (GL)—are included in the parameterized framework here.

All these charging policies require an initial set of fees on different activities, including fee for

registration, fee for information, fee per shout, fee per transaction, and fee on profit, denoted as fr,

fi, fs, ft , and fp respectively in Figure 6.1.

GL needs additional parameters in adapting its charges. It employs a simple exploring moni-

tor component, to determine whether traders are still exploring so as to find a good marketplace

to trade in. The exploring monitor component monitors the daily distribution of traders among

marketplaces and uses the degree of flatness of the distribution—the standard deviation of the dis-

tribution relative to the mean of the distribution—as an indicator for the degree of exploration by

traders. When the degree of exploration is higher than a threshold, τ ∈ [0,1], GL lowers the charges

to lure traders, or otherwise it learns from the charges imposed by the most profitable marketplace.

GL also uses a learning rate parameter, r ∈ [0,1], to control how fast the marketplace adapts its

charges, which is identical to the way ZIP adapts trading prices.
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6.2.7 A tree model

The tree model of double auctions in Figure 6.1 illustrates how building blocks are selected and

assembled level by level. There are and nodes, or nodes, and leaf nodes in the tree. An

and node, rounded and filled, combines a set of building blocks, each represented by one of its

child nodes, to form a compound building block. The root node, for example, is an and node to

assemble policies, one on each aspect described above, to obtain a complete auction mechanism.

An or node, rectangular and filled, represents the decision making of selecting a building block

from the candidates represented by the child nodes of the or node based on their quality scores.

This selection occurs not only for those major aspects of an auction mechanism, i.e. M, Q, A, P, C,

and G (at G’s child node ‘policy’ in fact), but also for minor components, for example, a learning

component for an adaptive policy (in a similar way to that in which Phelps et al. learnt a trading

strategy [Phelps et al., 2006]), and for determining optimal values of parameters in a policy, like

θ in MT and k in PD. A leaf node represents an atomic block that can either be for selection at

its or parent node or be further assembled into a bigger block by its and parent node. A special

type of leaf node in Figure 6.1 is that with a label in the format of [x,y]. Such a [x,y] node is

a convenient representation of a set of leaf nodes that have a common parent—the parent of this

special leaf node—and take values evenly distributed between x and y for the parameter labeled

at the parent node.

6.3 The GREY-BOX-AMD algorithm

This section presents the grey-box algorithm for automated acquisition of auction mechanisms

for CAT games. The grey-box algorithm combines techniques from reinforcement learning, e.g.,

solutions to n-armed bandit problem [Sutton and Barto, 1998], and evolutionary computation, e.g.,
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the use of a Hall of Fame [Rosin, 1997]. The general idea of this algorithm is to use n-armed bandit

learners to choose building blocks when needed so as to construct auction mechanisms based on

the tree model in Figure 6.1, to run CAT games to evaluate the constructed mechanisms, and to

keep good mechanisms in a Hall of Fame.

In the tree model, or nodes contribute to the variety of auction mechanisms in the search space

and are where exploitation and exploration occur. We model each or node as an n-armed bandit

learner that chooses among candidate blocks, and we use the simple softmax method to solve this

learning problem.62 Solving all the n-armed bandit learners in the tree will uniquely determine a

configuration of an auction mechanism, which is exactly how an auction mechanism is sampled

in the search space. The sampled mechanisms can then be put into a CAT game for evaluation.

The game score of a sampled mechanism not only suggests how good the mechanism itself is, but

is also an indicator of the performance of the building blocks that are used in the mechanism. If

a building block is due to the selection of an n-armed bandit learner among the child nodes of

the corresponding or node, the game score can be readily used as the feedback for the building

block. All such feedback to a building block cumulatively serves as the expected return, or what

we call the quality score, of the building block. Thus, after a game completes, the quality scores

of building blocks that are children of an or node are updated, and so are the way how an auction

mechanism is sampled in the space in later steps.

Given a set of building blocks, B, that are in the form of the tree model, and a set of fixed

market mechanisms, FM, as opponents for sampled mechanisms to beat in CAT games, we define

the skeleton of the grey-box algorithm in Algorithm 1, denoted as the GREY-BOX-AMD algorithm,

which we describe in detail as follows.
62The same solution was adopted in designing market selection strategies for trading agents in CAT games, which

was described in Section 4.1.2. However the two scenarios may need different parameter values. The market selec-
tion scenario should favor choices that give a good profit—a cumulative measure—while here we require effective
exploration to find a good mechanism in the foreseeable future—a one-time concern.
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Algorithm 1: The GREY-BOX-AMD algorithm.

Input: B, FM
Output: HOF

1 begin
2 HOF←∅
3 for s← 1 to num of steps do
4 G← Create-Game()

5 SM←∅
6 for m← 1 to num of samples do
7 M← Create-Market()

8 for t← 1 to num of policytypes do
9 B← Select(Bt , 1)

10 Add-Block(M, B)

11 SM← SM∪{M}
12 EM← Select(HOF, num of hof samples)

13 Run-Game(G, FM∪EM∪SM)

14 foreach M ∈ EM∪SM do
15 Update-Market-Score(M, Score(G, M))

16 if M /∈HOF then
17 HOF←HOF∪{M}
18 if capacity of hof < |HOF| then
19 HOF←HOF− {Worst-Market(HOF)}
20 foreach B used by M do
21 Update-Block-Score(B, Score(G, M))

The GREY-BOX-AMD algorithm runs a certain number of steps. At each step, a single CAT game

is created and a set of market mechanisms are prepared for the game. This set of market mecha-

nisms includes all market mechanisms in FM, a certain number of market mechanisms sampled

from the search space, denoted as SM, and a certain number of market mechanisms, denoted as

EM, chosen from a Hall of Fame, HOF. All these market mechanisms, each run by a specialist

in its marketplace, are put into the game, which evaluates the performance of these market mech-

anisms. The HOF has a fixed capacity, and maintains market mechanisms that performed well in

games at previous steps in terms of their average scores across games in which they participated.
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The HOF is empty initially, updated after each game, and returned in the end as the output of the

GREY-BOX-AMD algorithm.

Each market mechanism in SM is constructed based on the tree model in Figure 6.1. After an

‘empty’ market mechanism, M, is created, building blocks can be incorporated into M. There are a

certain number of different policy types, and from each group of policies of the same type, denoted

as Bt where t specifies the type, a building block is chosen for M. For simplicity, this algorithm

illustrates only what happens to the or nodes at the high level, including M, Q, A, C, and P. Market

mechanisms in EM are chosen from the HOF in a similar way.

After a CAT game, G, completes at each step, the game score of each participating market

mechanism M ∈ SM∪EM, Score(G, M), is recorded and the game-independent score of M,

Score(M), is updated. If M is not currently in the HOF and Score(M) is higher than the lowest

score of market mechanisms in the HOF, it replaces that corresponding market mechanism.

Score(G, M) is also used to update the quality score of each building block used by M.

Both Update-Market-Score() and Update-Block-Score() in Algorithm 1 calculate respec-

tively game-independent scores of market mechanisms and quality scores of building blocks by

averaging feedback Score(G, M) over time. Because choosing building blocks occurs only at

or nodes in the tree, only child nodes of an or node have quality scores and receive feedback

after a CAT game. Initially, quality scores of building blocks are all 0, so that the probabilities of

choosing them are even. As the exploration proceeds, fitter blocks score higher and are chosen

more often to construct better mechanisms.
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6.4 Experiment Set I: Learning against classic double auction

mechanisms

We carried out two sets of experiments to acquire auction mechanisms using the grey-box ap-

proach. The first set of experiments search the space of auction mechanisms presented above for

mechanisms that are competitive in CAT competitions. This work was reported briefly in [Niu et al.,

2010a] and with more detail in [Niu et al., 2010b].

6.4.1 Experimental setup

We extended JCAT with the parameterized framework of double auctions and all the individual

policies described in Section 6.2. To reduce the computational cost, we eliminated the exploration

of charging policies by focusing on mechanisms that impose a fixed charge of 10% on trader

profit, which we denote as GF0.1. Analysis of CAT games [Niu et al., 2008a] and what entries have

typically charged in actual CAT competitions, especially in the latest three events, suggest that such

a charging policy is a reasonable choice to avoid losing either intra-marginal or extra-marginal

traders. Even with this cut-off, the search space still contains more than 1,200,000 different kinds

of auction mechanisms, due to the variety of policies for aspects other than charging and the choices

of values for parameters.

The experiments that we ran to search the space each last 200 steps. At each step, we sample

two auction mechanisms from the space, and run a CAT game to evaluate them against four fixed,

well known, mechanisms plus two mechanisms that performed well at previous steps and are

members of the Hall of Fame. The scores of the sampled and Hall of Fame mechanisms are used

as feedback for every building block that an individual mechanism uses and is associated with a

quality score.
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To sample auction mechanisms, the softmax exploration method used by or nodes starts with

a relatively high temperature (τ = 10) so as to explore randomly, then gradually cools down, τ

scaling down by 0.96 (α) each step, and eventually maintains a temperature (τ = 0.5) that guaran-

tees a non-negligible probability of choosing even the worst action any time.63 After all, our goal

in the grey-box approach is not to converge quickly to a small set of mechanisms, but to explore

the space as broadly as possible and avoid being trapped in local optima.

The fixed set of four auction mechanisms in every CAT game includes two CHs—CHl and CHh—

and two CDAs—CDAl and CDAh—with one of each charging 10% on trader profit, like GF0.1 does,

and the other charging 100% on trader profit (denoted as GF1.0). The CH and CDA mechanisms are

two common double auctions and have been used in the real world for many years, in financial

markets in particular due to their high allocative efficiency. Earlier experiments we ran, involving

CH and CDA mechanisms against entries from CAT competitions, indicate that it is not trivial to win

over these two standard double auctions. Auction mechanisms with different charge levels are in-

cluded to avoid any sampled mechanisms taking advantage otherwise. Based on the parameterized

framework in Section 6.2, the CH and CDA mechanisms can be represented as follows:

CHl = ME + QT + AQ + CR + PUk=0.5 + GF0.1

CHh = ME + QT + AQ + CR + PUk=0.5 + GF1.0

CDAl = ME + QT + AQ + CC + PDk=0.5 + GF0.1

CDAh = ME + QT + AQ + CC + PDk=0.5 + GF1.0

The Hall of Fame that we maintain during the search contains up to ten members. After each

CAT game, the two sampled mechanisms are compared with those Hall of Famers. If the score of

a sampled mechanism is higher than the lowest average score of the Hall of Famers, the sampled

mechanism is inducted into the Hall of Fame and replaces the corresponding Hall of Famer. The

replaced Hall of Famer may be re-inducted if an identical mechanism happens to be sampled from
63At around the 75th step, τ reaches 0.5 and remains constant later on.
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the space again and scores highly enough to promote its average score to surpass the lowest score

of Hall of Famers. In addition, the softmax method used to choose two out of the ten Hall of

Famers involves a constant τ = 0.3. Since the scores of the Hall of Famers gradually converge in

the experiments and the difference between the best and the worst Hall of Famers is less than 25%

(see Figure 6.2b below), this value of τ guarantees that the bias towards the best Hall of Famers is

modest and all Hall of Famers have a fairly big chance to be chosen.

Each CAT game is populated by 120 trading agents, using ZI-C, ZIP, RE, and GD strategies, a

quarter of the traders using each strategy. Half the traders are buyers, half are sellers. The private

values of these traders are drawn from a uniform distribution between $50 and $150. Each CAT

game lasts 500 days with ten rounds for each day. This setup is similar to that of actual CAT compe-

titions except for a smaller trader population that helps to reduce computational costs. The results

that are reported in the next section are averaged over 40 runs of the grey-box experiment. Each run

is an execution of the GREY-BOX-AMD algorithm shown in Algorithm 1 and uses a different seed

for the random number generator that is used in JCAT and the n-armed bandit learners for selecting

building blocks and auction mechanisms. Each run lasts 200 steps with a single CAT game at each

step. That is to say that the CAT game is used as the evaluation function for auction mechanisms

in these experiments, each invocation of the function evaluates eight mechanisms, and there are

200 invocations totally in a single run of the experiment. The experiments were carried out on a

64-node Linux cluster at the CUNY Graduate Center. A 200-step grey-box experiment takes around

12 hours on a node that typically runs at 2.8GHz and has a 4GB memory. All the 40 experiments

lasted about three days due to the limited number of jobs that each user is allowed to run on the

cluster.64

Table 6.1 summarizes the values of parameters and inputs of Algorithm 1 in our experiments.

64The maximum number of tasks that a user is allowed to run at any time on the cluster is 10 when the experiments
were carried out.
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Table 6.1: The values of parameters and inputs of the GREY-BOX-AMD algorithm in the first set of
experiments.

Parameter/Input Value

num of steps 200
num of samples 2
num of hof samples 2
capacity of hof 10
num of policytypes 5
initial τ0

∗ 10
minimal τ0

∗ 0.5
α0
∗ 0.96

τ1
† 0.3

α1
† 1

FM {CHl , CHh, CDAl , CDAh}
∗ τ0 and α0 are parameters in the softmax solver used by the Select(Bt , 1) function in Algorithm 1.
† τ1 and α1 are parameters in the softmax solver used by the Select(HOF, num of hof samples)

function in Algorithm 1.

6.4.2 Experimental results

We collected data and checked whether the grey-box approach is successful in searching for good

auction mechanisms in four different ways.

First, we measured the performance of the generated mechanisms indirectly, through their

effect on other mechanisms. Since the four standard market mechanisms participate in all the CAT

games, their performance over time reflects the strength of their opponents—they will do worse as

their opponents get better—which in turn reflects whether the search generates increasingly better

mechanisms. Figure 6.2a shows that the scores of the four market mechanisms (more specifically

the average daily scores of the market mechanisms in a game) decrease over 200 steps, especially

over the first 100 steps, suggesting that the mechanisms we are creating get better as the learning

process progresses.
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0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

Step

S
c
o

re

(e) The worst Hall of Famer(s).

Figure 6.2: Scores of market mechanisms across 200 steps in the first set of grey-box experiments,
averaged over 40 runs.

Second, we measured the performance of the set of mechanisms we created more directly. The

mechanisms that are in the Hall of Fame at a given point represent the best mechanisms that we

know about at that point and their performance tells us more directly how the best mechanisms

evolve over time. Figure 6.2b shows the scores of the ten Hall of Famers at each step over the

40 200-step runs.65 As in Figure 6.2a, the first 100 steps sees a clear, increasing trend. Even the

65Note that the Hall of Famers may be different mechanisms at different steps in the process, so, for example, the
curve for the best Hall of Famer in the figure may reflect the scores of many different mechanisms, the highest we
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Table 6.2: The average daily scores of the best fixed market mechanism and the best and worst
Hall of Famers in the CAT games at the end of the first set of grey-box experiments.

Market mechanism Mean SD

Best fixed mechanism (CDAl) 0.3101 0.0659
Best Hall of Famers 0.4652 0.0210
Worst Hall of Famers 0.3790 0.0219

scores of the worst of the ten at the end are above 0.35, higher than the highest of the four fixed

market mechanisms from Figure 6.2a. Indeed, Table 6.2 lists respectively the average scores of

the best fixed market mechanism, and the best and worst Hall of Famers at the end of the grey-box

experiments as well as the standard deviations. At the 95% confidence level, the score of the worst

Hall of Famers is significantly higher than that of the best fixed market mechanism, CDAl . Thus

we know that our approach will create mechanisms that outperform standard mechanisms, though

we should not read too much into this since we trained our new mechanisms directly against them.

It should be noted that in Figure 6.2b and in Figure 6.2d the scores of the top Hall of Famers

descend slightly or reach a plateau after around 100 steps. This is due to two reasons. On one

hand, these Hall of Famers face stronger and stronger opponents as the grey-box experiments go

on and better mechanisms are sampled and put into the games at latter steps—the same reason

caused the descending scores of the fixed market mechanisms. On the other hand, as the grey-box

experiments go on, no new mechanisms can be found and inducted into the Hall of Fame that are

able to produce significantly better performance than those existing Hall of Famers, thus failing

to hold the increasing records. The time when the plateau begins and the level where the plateau

resides are both quantitative indicators of the effectiveness of the search process, and provide

guidance on, for example, how long a grey-box experiment should run to obtain stable results.

know of up to the the point when we collected the data.
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A better test of the new mechanisms is to run them against those mechanisms that we know

to be strong in the context of CAT games, asking what would have happened if our Hall of Fame

members had been entered into prior CAT competitions and had run against the carefully hand-

coded entries in those competitions. We chose three Hall of Famers from the ten Hall of Famers

obtained in one of the 40 runs. These Hall of Famers are internally labeled as SM7.1, SM88.0, and

SM127.1 and can be represented in the parameterized framework in Section 6.2 as follows:

SM7.1 = ME + QO + AHτ=0.4 + CPp=0.3 + PNn=11 + GF0.1

SM88.0 = ME + QT + AA + CPp=0.4 + PUk=0.7 + GF0.1

SM127.1 = ME + QS + AS + CPp=0.4 + PUk=0.7 + GF0.1

We ran these three mechanisms against the best recreation of past CAT competitions that we could

achieve given the contents of the TAC agent repository,66 where competitors are asked to upload

their entries after the competition. The CAT games were set up in a similar way to the competitions,

populated by 500 traders that are evenly split between buyers and sellers and between the four

trading strategies—ZI-C, ZIP, RE, and GD—and the private values of sellers or buyers were drawn

from a uniform distribution between $50 and $150. For the recreated competitions, we ran three

games for 2007 and 2008 (like in the actual competitions) and ten games for 2009.67,68

Tables 6.3a, 6.3b and 6.12a list the average cumulative scores of all the market mechanisms

across the games along with the standard deviations of those scores against entries from CAT 2007,

2008, and 2009 respectively.69 The three new mechanisms we obtained from the grey-box experi-

ments beat the actual entries from CAT 2007 and CAT 2008 by a comfortable margin in both cases.

66http://www.sics.se/tac/showagents.php.
67It is desirable to run more games for each recreated competition. However some of the entries from prior CAT

competitions use a graphical interface, e.g., MyFuzzy for CAT 2008 and IAMwildCAT and UMTac for CAT 2009, which
makes it difficult to run games involving these entries repeatedly in an automated manner on our cluster.

68When we ran these experiments, CAT 2010 had been held but no entries had been made available in the TAC agent
repository so we were unable to recreate the latest competition.

69The data for CAT 2009 is placed in a separate table so as to be compared with the data from the second set of
grey-box experiments that is to be described later.

http://www.sics.se/tac/showagents.php
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Table 6.3: The scores of market mechanisms in the CAT games including the best mechanisms from
the first set of grey-box experiments and entries from prior CAT competitions, averaged over three
CAT games respectively for 2007 and 2008.

(a) Against CAT 2007 entries.

Mechanism Score SD

SM7.1 199.4500 5.9715
SM88.0 191.1083 10.3186
SM127.1 180.1277 9.0289
MANX 154.6953 1.3252
Croc’Agent 142.0523 9.0867
TacTex 138.4527 5.8224
PSUCAT 133.1347 5.6565
PersianCat 124.3767 11.2409
jackaroo 108.8017 8.6851
IAMwildCAT∗ 106.8897 4.4006
Mertacor 89.1707 4.9269

(b) Against CAT 2008 entries.

Mechanism Score SD

SM7.1 196.7240 9.2843
SM88.0 186.9247 4.2184
SM127.1 183.5887 9.7835
jackaroo 177.5913 2.5722
Mertacor 161.5440 5.8741
MANX 147.3050 15.7718
IAMwildCAT 142.9167 8.9581
PersianCat 139.1553 17.9783
DOG 130.2197 18.9782
MyFuzzy 125.9630 1.9221
Croc’Agent∗ 71.4820 5.8687
PSUCAT∗ 68.3143 6.7389

∗ IAMwildCAT from CAT 2007, and CrocodileAgent (abbreviated as Croc’Agent in the table) and
PSUCAT from CAT 2008 worked abnormally during the games and tried to impose invalid fees, prob-
ably due to competition from the three new, strong opponents. Although we modified JCAT to avoid
kicking out these entries on those trading days when they impose invalid fees—which JCAT does in an
actual CAT tournament—these market mechanisms still perform poorly, in contrast to their rankings
in the tournaments.

The fact that we can take mechanisms that we generate in one series of games (against the fixed

opponents and other new mechanisms) and have them perform well against a separate set of mech-

anisms suggests that the grey-box approach learns robust mechanisms. The three new mechanisms

failed to win the competition against entries from CAT 2009, but were able to perform better than

some of them. The second set of grey-box experiments that is to be described in the next section

aims to search for mechanisms that perform well against entries from CAT 2009.

In passing, we note that the rankings of the entries from the repository do not reflect those in

the actual CAT competitions. This is to be expected since the entries now face new opponents and

different market mechanisms will, in general, respond differently to this. Excluding the market
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mechanisms that attempt to impose invalid fees and are marked with ‘*’, we can see that the

overall performance of entries from the two recent, actual CAT competitions is significantly better

than that of those into the competitions in the previous year respectively when they face the three

new, strong, opponents, reflecting the improvement in the entries over time. Mertacor, which did

not win the actual 2009 CAT competition, surprisingly beat all other mechanisms by a huge margin.

It is unclear whether this is due to a different, improved version of Mertacor uploaded to the TAC

agent repository, or some other reason.

Finally, we tested the performance of SM7.1, SM88.0, and SM127.1 when they are run in

isolation, applying the same kind of test that auction mechanisms are traditionally subject to. We

tested the mechanisms both for allocative efficiency and, following our work in [Niu et al., 2006],

for the extent to which they trade close to theoretical equilibrium as measured by the coefficient

of convergence, α , even when populated by minimally rational traders. In [Niu et al., 2006] we

proposed a class of double auctions, called NCDAEE, which can be represented as:

NCDAEE = ME + AEw,δ + CC + PNn

The advantage of NCDAEE is that it can give significantly lower α—faster convergence of trans-

action prices—and higher allocative efficiency (Ea) than a CDA when populated respectively by

homogeneous ZI-C traders and can perform comparably to a CDA when populated by homogeneous

GD traders.

We replicated these experiments using JCAT and ran additional ones for the three new mecha-

nisms with similar configurations. The results of these experiments are shown in Table 6.4.70 The

best result in each column is shaded. We can see that both SM7.1 with ZI-C traders and SM88.0

with GD traders give higher Ea than the best of the existing market mechanisms respectively, and

70The results we get there are slightly different from those we reported in [Niu et al., 2006] (in which we used a
different platform), but the pattern of these results still holds. In addition, we ran an NCDAEE variant (δ = 30) that was
not tested in [Niu et al., 2006], observing that those with δ ≤ 20 do not perform well when populated by GD traders.
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Table 6.4: Economic properties of the best mechanisms from the first set of grey-box experiments
and the auction mechanisms explored in [Niu et al., 2006]. All NCDAEE mechanisms are configured
to have w = 4 in their AE policies and n = 4 in their PN policies. The best result in each column
is shaded. Data in the first four rows are averaged over 1,000 runs and those in the last four are
averaged over 100 runs.

Mechanism
ZI-C GD

Ea α Ea α

Mean SD Mean SD Mean SD Mean SD

CDA 97.464 3.510 13.376 4.351 99.740 1.553 4.360 3.589
NCDAEEδ=0 98.336 3.262 4.219 3.141 9.756 28.873 14.098 1.800
NCDAEEδ=10 98.912 2.605 5.552 2.770 23.344 41.727 7.834 5.648
NCDAEEδ=20 98.304 2.562 7.460 3.136 89.128 30.867 4.826 3.487
NCDAEEδ=30 97.708 3.136 8.660 3.740 99.736 1.723 4.498 3.502

SM7.1 99.280 1.537 4.325 2.509 58.480 47.983 4.655 4.383
SM88.0 98.320 2.477 11.007 4.251 99.920 0.560 4.387 2.913
SM127.1 97.960 3.225 11.152 4.584 99.520 1.727 4.751 3.153

both of these increases are statistically significant at the 95% level. Both cases also lead to low

α , not the lowest in the column but close to the lowest, and the differences between them and the

lowest are not statistically significant at the 95% level. Thus the grey-box approach can generate

mechanisms that perform as well in the single marketplace case as the best mechanisms from the

literature.

6.4.3 Choosing parameter values

The performance of the mechanisms obtained in the grey-box experiments suggests that the pa-

rameter values we chose in these experiments, those listed in Table 6.1, are reasonable, however it

needs further investigation to determine whether the choices of parameter values play an important

role in the grey-box algorithm.
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In Table 6.1, FM and num of policytypes are part of the input. num of samples and

num of hof samples are set to 2 due to the maximum number of marketplaces that are typically

allowed in a CAT game involving 120 traders. Our experience in running CAT games suggested that

at least 15 traders per marketplace are needed in a CAT game to obtain statistically reliable results

while still incorporating the diversity of traders in terms of their roles as sellers or buyers, their

competitiveness based on their private values, and the trading strategies they may adopt.71 Having

more traders in the game will allow us to sample more mechanisms at each step of the grey-box

search but it will significantly increase the computational cost. Our test showed that increasing

the number of traders in a game will lead to a quadratic or possibly exponential increase of the

time cost. The parameters used in softmax solvers—the initial τ0, the minimal τ0, α0, τ1, and

α1—take values in a way to balance exploitation and exploration in selecting building blocks and

Hall of Famers respectively. The values of τ0 and α0 make sure that the softmax selection is close

to random in the first 20 or so steps, and the temperature stops cooling down after about 40 steps

and remains at 0.5 so as to give just a modest advantage to the best choice, the normalized return

of which is always set to be 1.0.72 τ1 is a constant 0.3 with α1 = 1 so that the selected Hall of

Famer is very likely to be one of those whose scores fall into the range between 0.35 and 0.48

(estimated to be normalized to 0.73 and 1.0 respectively) as shown in Figure 6.2b, while those that

perform poorly, particularly those that are inducted into the Hall of Fame during the early stage of

the grey-box search and score typically below 0.1 (estimated to be normalized to 0.21), will not

have much chance to be selected. Finally, capacity of hof is set to 10 to balance the diversity

71This minimum number of traders we observed from our experimentation is approximately in the same range as
the number of traders in [Smith, 1962], [Gode and Sunder, 1993a], and [Cliff and Bruten, 1997]—22 (in one case),
12, and 22 respectively.

72After 20 steps (2 samples each step), the value of τ0 in the softmax solvers for or nodes including M, Q, A, P
and C in the tree model becomes approximately 2.0 (10×0.9620×2), still much higher than even the maximum return,
which is 1.0 after normalization. That is to say that τ is between 10.0 and 2.0 while Q(ai) is at most 1.0 in (4.1) on
Page 54. τ0 comes below 0.5 after 37 steps (37 is the solution to 10×0.962x = 0.5).
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of mechanisms in the Hall of Fame and the number of times a Hall of Famer is typically selected

to compete in games so that its average score may give a reliable estimate of its performance.

The parameters could be tweaked. Searching for optimal values for all these parameters is

desirable but prohibitive due to the limited computational resources we have access to, as we

have to run multiple runs of the grey-box search for each configuration of parameters and these

may take years to complete in total. Therefore, we chose to focus on one of the parameters,

capacity of hof. We ran additional experiments to check whether the grey-box experiments are

sensitive to this parameter and report our analysis in this section.

We ran three additional sets of grey-box experiments, each using a different capacity of the

Hall of Fame, 5, 15, and 20 respectively in contrast to 10 in the initial set of experiments. The

experimental setup remained otherwise the same as before. Illustrated in Figures 6.3 and 6.4 are

the scores of the four fixed market mechanisms and the Hall of Famers in these experiments re-

spectively. The results from the initial set of grey-box experiments where |HOF| = 10 are also

included for comparison, which are already shown in Figure 6.2. Figure 6.3 suggests that market

mechanisms sampled from these different sets of experiments produced similar conditions of com-

petition to the fixed market mechanisms as the performances of these fixed mechanisms follow

similar patterns. The first row of Table 6.5 lists the average daily scores of the best fixed market

mechanism—CDAl in all the cases—at the end of these experiments respectively. The differences

between these scores are not statistically significant at the 95% confidence level.

The scores of the Hall of Famers indicate a different trend however. Figure 6.4 shows that the

top Hall of Famers tend to perform better as the capacity of the Hall of Fame increases. The scores

at the end of the experiments with |HOF| = 15 or 20, given in the second row of Table 6.5, are

significantly better than that from the experiments with |HOF| = 10, both at the 95% confidence

level. This indicates that there is merit in increasing the capacity of the Hall of Fame. A close look
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Figure 6.3: Scores of the four fixed market mechanisms across 200 steps in different sets of grey-
box experiments, each set using a different capacity for the Hall of Fame, averaged over 40 runs.
(b) is identical to Figure 6.2a.
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Figure 6.4: Scores of the Hall of Famers across 200 steps in different sets of grey-box experiments,
each set using a different capacity for the Hall of Fame, averaged over 40 runs. (b) is identical to
Figure 6.2b.

at the top Hall of Famers and the games they participated in reveals that many more of the top Hall

of Famers in the cases of |HOF|= 15 and |HOF|= 20 (26 and 29 out of 40 respectively) compared

to the other two cases (11 and 5 out of 40 respectively) are evaluated five times or fewer. On one

hand, a larger Hall of Fame means that each individual has fewer chances to be selected during

the 200 games each run; on the other hand, a larger Hall of Fame lowers the barrier of induction

to weak market mechanisms, and the opponents of these bottom Hall of Famers in a game thus

benefit from the latter’s weakness, resulting in higher scores of the former. An examination of the

top Hall of Famers that were selected and competed only once confirmed this.73 That is to say that

73It is possible that mechanisms identical to these Hall of Famers were actually selected and competed in games
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Table 6.5: The average daily scores of the best fixed market mechanism and the best Hall of Famers
in the CAT games at the end of the sets of grey-box experiments, each set using a different capacity
for the Hall of Fame. In parentheses are the standard deviations. The scores in shaded cells are
significantly different, at the 95% confidence level, from their counterpart from the initial set of
experiments (|HOF|= 10).

Market mechanism |HOF|= 5 |HOF|= 10 |HOF|= 15 |HOF|= 20

Best fixed mechanism (CDAl) 0.2901 (0.0726) 0.3101 (0.0659) 0.2957 (0.0767) 0.2963 (0.0638)
Best Hall of Famers (all)† 0.4572 (0.0227) 0.4652 (0.0210) 0.4772 (0.0238) 0.4860 (0.0202)
Best Hall of Famers (reliable)‡ 0.4551 (0.0136) 0.4603 (0.0164) 0.4619 (0.0122) 0.4589 (0.0199)

† Data is calculated based on all the Hall of Famers generated from the experiments.
‡ Data is calculated based on the Hall of Famers that were sampled and evaluated at least five times

during the experiments, which gives relatively more reliable observations.

the other selected Hall of Famer in the game is much weaker and the two sampled mechanisms

from the search space are not strong either. These observations led us to recalculate the scores of

the top Hall of Famers in the experiments by excluding those that appeared in five games or fewer

and using the scores of the Hall of Famers that come next after the top Hall of Famers in the Hall

of Fames respectively and were recorded more appearances. This new calculation resulted in the

data shown in the third row of Table 6.5, labeled as reliable. For example, Table 6.6 lists the 20

Hall of Famers from one run of the grey-box experiment with |HOF|= 20. The top score, 0.490,

is used in calculating the data in the second row of Table 6.5 while the second highest score, 0.458,

is used in producing the third row. Statistical tests show that the scores in the third row do not

differ significantly at the 95% confidence level.

Based on these experiments and the analysis above, we conclude that the grey-box algorithm

is not sensitive to the capacity of the Hall of Fame in the range that we checked (5 to 20). As only

400 mechanisms at most are sampled from the search space in each run of experiments, choosing a

capacity that is well beyond 20 (5% of the number of sampled mechanisms already) may introduce

before their induction into the Hall of Fame. But these appearances are not counted in the number of games a Hall of
Fame participated, e.g., those shown in the third column in Table 6.6.
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Table 6.6: The Hall of Famers from one of the grey-box experiments with |HOF|= 20.

Rank Score Games Market mechanism

1 +0.490 1 MTθ=−0.2 + QT + AS + CR + PNn=5 + GF0.1
2 +0.458 7 ME + QO + AS + CPp=0.4 + PNn=5 + GF0.1
3 +0.444 2 ME + QO + AS + CPp=0.7 + PNn=13 + GF0.1
4 +0.442 1 MV + QO + AEw=13,δ=50 + CR + PNn=7 + GF0.1
5 +0.440 4 MTθ=−0.8 + QS + AS + CPp=0.3 + PUk=0.8 + GF0.1
6 +0.437 14 ME + QS + AA + CPp=0.4 + PNn=15 + GF0.1
7 +0.431 13 MTθ=0.8 + QO + AS + CPp=0.1 + PNn=15 + GF0.1
8 +0.431 25 ME + QS + AA + CPp=0.3 + PDk=0.2 + GF0.1
9 +0.430 23 MTθ=0.6 + QS + AHτ=0.1 + CPp=0.4 + PUk=0.7 + GF0.1

10 +0.426 15 ME + QT + AA + CPp=0.3 + PNn=13 + GF0.1
11 +0.416 6 ME + QS + AA + CPp=0.5 + PNn=15 + GF0.1
12 +0.412 12 ME + QO + AS + CPp=0.4 + PNn=11 + GF0.1
13 +0.411 4 MTθ=0.2 + QS + AEw=13,δ=50 + CPp=0.3 + PNn=7 + GF0.1
14 +0.408 14 MTθ=1.0 + QO + AS + CPp=0.4 + PNn=9 + GF0.1
15 +0.403 23 ME + QS + AA + CPp=0.2 + PNn=3 + GF0.1
16 +0.400 8 MTθ=0.2 + QO + AQ + CPp=0.4 + PDk=0.3 + GF0.1
17 +0.394 2 MV + QT + AEw=7,δ=25 + CPp=0.7 + PUk=0.8 + GF0.1
18 +0.393 5 MV + QO + AHτ=0.3 + CPp=0.4 + PNn=11 + GF0.1
19 +0.393 11 MTθ=−0.6 + QT + AEw=13,δ=40 + CPp=0.3 + PNn=7 + GF0.1
20 +0.376 4 MV + QS + AS + CPp=0.8 + PUk=0.7 + GF0.1

too many spam mechanisms in the Hall of Fame, lower the ‘pressure’ on sampled mechanisms,

and result in a prolonged convergence.

6.4.4 A comparison to the genetic algorithm

We have shown in previous sections that the grey-box experiments are successful in producing

strong market mechanisms for CAT games. A more convincing way to demonstrate the effective-

ness of the grey-box approach is to compare it with other search methods, especially the evolu-

tionary computation approaches that have been applied successfully in the domain of experimental

auction mechanism design as in [Cliff, 2001a, 2005; Niu et al., 2006; Phelps, 2007]. In this section,
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we describe the additional experiments that we carried out based on the classic GA [Forrest, 1993;

Holland, 1975] to search in the space of auction mechanisms that was introduced in Section 6.2,

the same space as explored in the initial set of grey-box experiments in Section 6.4.1.

In these GA experiments, each individual auction mechanism is represented by a tree structure,

which is based on the tree model in Figure 6.1 but differs slightly. As each individual auction

mechanism can be viewed as the result of making selections at the or nodes in the tree model (it

is exactly the case in the grey-box experiments), the individual can be conveniently represented by

the tree structure after the unselected branches of the or nodes are cut off from the tree model.

For example, the tree on the left side in Figure 6.5 represents the market mechanism

ME + QS + ADw=3 + CPp=0.4 + PUk=0.7 + GF0.1

where, for convenience, the leaf node, GF0.1, replaces the subtree that selects GF at the or node,

policy, and selects 0, 0, 0, 0, and 0.1 respectively at the or nodes of fr, fi, fs, ft , and fp in

Figure 6.1. Similar to the grey-box experiments above, in the GA experiments we explore only

among the mechanisms that choose GF0.1 as their charging policy.

The tree-based encoding of an individual requires specialized mutation and crossover opera-

tors, due to the hierarchical construction and the different types of node in the tree. The diversity

of auction mechanism individuals in the space originates from the or nodes, so mutation and

crossover occur only at or nodes. To apply mutation to an individual, it is decided probabilis-

tically, based on the mutation rate, at each or node in its tree-based encoding whether the node

selects a different child node from the tree model. If yes, the original child (and its children if any)

is replaced by the new child, which is uniformly selected from all the possible choices other than

the original one. If the new child requires its own descendants, the whole subtree is added. De-

scendants that are or nodes make their selections randomly, in contrast to the way in the grey-box

experiments where selections are made based on the quality scores of different choices. Figure 6.5
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Figure 6.5: An illustration of mutation in the GA on the mechanism denoted as ME + QS + ADw=3 +
CR + PUk=0.7 + GF0.1. On the left side is the individual before mutation, and on the right side is the
individual after mutation. The replaced and replacing subtrees are both enclosed by dotted lines.

The leaf node, GF0.1, is a convenient representation of the charging policy that is fixed in each
mechanism in the search space.

demonstrates an example of mutation on the auction mechanism given above, with the encoding

before mutation on the left side and the encoding after mutation on the right side. The node C is

the only place where mutation occurs and as a result the branch CPp=0.4 is replaced by CR, both

enclosed by dotted lines. The new mechanism is denoted as

ME + QS + ADw=3 + CR + PUk=0.7 + GF0.1

Crossover occurs between two auction mechanism individuals in the GA experiments, and only

at or nodes similar to what happens with mutation. To perform crossover, indeed single-point

crossover, between two individuals, the or nodes that appear in both trees and have different

children respectively in the two trees are collected; then one of these collected nodes is selected

randomly as the place to possibly perform the crossover; and finally it is decided probabilistically,

based on the crossover rate, whether or not to perform the crossover, and if yes, the two appear-

ances of the selected node in the two trees switch their children. Figure 6.6 demonstrates the

crossover between the two individuals—identified as a and b in the figure respectively—below:
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MTθ=0.4 + QO + AA + CPp=0.7 + PUk=0.2 + GF0.1

ME + QS + AA + CPp=0.2 + PNn=7 + GF0.1

In Figure 6.6, the or nodes at which crossover can be performed are marked with •, including

M, Q, P, and p. A and C are excluded because their children in the two trees respectively are

also identical, while θ and p in individual a and n in individual b are excluded because they

appear in only one of the two trees. Random selection among the eligible nodes picks P. After

a probabilistic test based on the crossover rate is taken and turns out to be positive, the subtrees

PUk=0.2 in a and PNn=7 in b, both enclosed by dotted lines in the figure, are swapped, producing

two new individuals:

MTθ=0.4 + QO + AA + CPp=0.7 + PNn=7+ GF0.1

ME + QS + AA + CPp=0.2 + PUk=0.2 + GF0.1

which are identified as a′ and b′ respectively in the figure.

The skeleton of the GA algorithm that is used in our GA experiments is given in Algorithm 2.

These GA experiments adopt the same search space of auction mechanisms, the same set of fixed

market mechanisms to evaluate the fitnesses of the mechanisms sampled from the space, and the

same idea of using a Hall of Fame to produce output as in the grey-box experiments described

earlier.

The initial generation of auction mechanism individuals in each GA experiment is created by

randomly sampling the search space in exactly the same way as at the beginning of the grey-

box search until a certain number (size of population) of individuals are obtained (see Func-

tion Init-Population). Each of the subsequent generations is created through steps of selection,

crossover, and mutation from the previous generation. The selection step, shown in Function Select-

Population, is a combination of elitism and roulette wheel selection. Elitism selection keeps a cer-

tain number of fitter individuals in the next generation based on the elitism rate, which determines
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Figure 6.6: An illustration of crossover in the GA between two individuals, MTθ=0.4 + QO + AA +
CPp=0.7 + PUk=0.2 + GF0.1 and ME + QS + AA + CPp=0.2 + PNn=7 + GF0.1, identified respectively as
a and b, producing two new individuals, MTθ=0.4 + QO + AA + CPp=0.7 + PNn=7+ GF0.1 and ME +
QS + AA + CPp=0.2 + PUk=0.2 + GF0.1, identified respectively as a′ and b′. The or nodes at which
crossover can be performed are marked with • in the original encodings. P is selected to be the
place where crossover is actually performed. The two subtrees with P as the root in the two trees
are swapped and enclosed by dotted lines.

the size of the portion of the population to be considered as elite individuals. Roulette wheel se-

lection fills the rest of the population by probabilistically selecting among all the individuals in the

previous generation. The probability of an individual being selected each time is proportional to
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Algorithm 2: The GA-AMD algorithm.

Input: B, FM
Output: HOF

1 begin
2 HOF←∅
3 for g← 1 to num of generations do
4 if g = 1 then
5 P← Init-Population(B)
6 else
7 P← Select-Population(P)
8 P← Crossover-Population(B, P, rco)

9 P← Mutate-Population(B, P, rm)

10 P← Randomize(P)
11 for i← 1 to |P|/num of samples do
12 G← Create-Game()

13 SM←∅
14 for m← 1 to num of samples do
15 SM← SM ∪ {P[(i−1)∗num of samples+m]}
16 EM← Select(HOF, num of hof samples)

17 Run-Game(G, FM∪EM∪SM)

18 foreach M ∈ EM∪SM do
19 Update-Market-Score(M, Score(G, M))

20 if M /∈HOF then
21 HOF←HOF ∪ {M}
22 if capacity of hof < |HOF| then
23 HOF←HOF − {Worst-Market(HOF)}

its fitness, which is its average daily score in the game that it participated in during the evaluation

of the previous generation. This type of selection has a known problem that individuals with low

fitnesses have little chance to get selected when the fitnesses of individuals differ dramatically. Due

to the scoring scheme of the CAT game, the typical daily score of a market ranges from 0.1 to 0.5,

so the usual drawback of roulette wheel selection does not have big impact in this GA algorithm.

The individuals that are picked in roulette wheel selection then go through the crossover and mu-
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Function Init-Population.

Input: B
Output: P

1 begin
2 P←∅
3 for i← 1 to size of population do
4 M← Create-Market()

5 for t← 1 to num of policytypes do
6 B← Select(Bt , 1)
7 Add-Block(M, B)

8 P← P ∪ {M}

Function Select-Population.

Input: P
Output: P′

1 begin
2 P′←∅
3 Descending-Sort(P)
4 ne← size of population∗ re

5 for i← 1 to ne do
6 P′← P′ ∪ {P[i]}
7 s← 0
8 for i← 1 to size of population do
9 s← s + Score(P[i])

10 for i← ne to size of population do
11 k← size of population

12 r← Uniform(0,s)
13 for j← 1 to size of population do
14 r← r − Score(P[i])
15 if r <= 0 then
16 k← j
17 break

18 P′← P′ ∪ {P[k]}
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Function Crossover-Population.

Input: B, P
Output: P′

1 begin
2 P′←∅
3 ne← size of population∗ re

4 for i← 1 to ne do
5 P′← P′ ∪ {P[i]}
6 for i← 1 to (size of population−ne)/2 do
7 P′← P′ ∪ {Crossover-Individuals(B, P[ne + i∗2−1], P[ne + i∗2],rco)}

Function Mutate-Population.

Input: B, P
Output: P′

1 begin
2 P′←∅
3 ne← size of population∗ re

4 for i← 1 to ne do
5 P′← P′ ∪ {P[i]}
6 for i← ne to size of population do
7 P′← P′ ∪ {Mutate-Individual(B, P[i], rm)}

tation steps. In the crossover step, shown in Function Crossover-Population, individuals are paired

up and each pair is probabilistically recombined (Crossover-Individuals() in Line 7) as we

described above and illustrated in Figure 6.6. In the mutation step, shown in Function Mutate-

Population, individuals are each probabilistically mutated (Mutate-Individual() in Line 7) as

we described above and illustrated in Figure 6.5.

To evaluate a generation of auction mechanism individuals, all the mechanisms are randomly

divided into groups. For each group, a CAT game is created, and, similar to those games in the

grey-box experiments, this CAT game also includes a set of fixed market mechanisms and a certain

number of mechanisms sampled from the Hall of Fame. After the game, the Hall of Fame is
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updated to incorporate the scores of the participating Hall of Famers and include new individuals

from the generation that performed well. The way in which the Hall of Fame is manipulated is

exactly the same as in the grey-box experiments. As mentioned above, the average daily scores of

the individuals are used as their fitnesses in the selection step.

In the GA experiments, each game is configured to evaluate two individuals from the popu-

lation as in the grey-box experiments. To compare the performances of the two approaches, the

population consists of 20 individual auction mechanisms at each generation and evolves over 20

generations so that each GA experiment makes use of approximately the same number of CAT

games in total (200) as in a grey-box experiment.74 Some experiments based on the GA may have a

population of thousands of individuals or even more. Our experiment cannot support a population

of this size due to the high computational cost of running CAT games. The 20 generations and the

population of 20 individuals are the result of balancing the two parameters under the constraint of

the total number of CAT games to run. The elitism rate, re, the crossover rate, rco, and the mutation

rate, rm, are set to be 0.1, 0.7, and 0.05, which are typical in the GA experiments reported in the

literature [De Jong, 1975; Goldberg, 1989; Haupt and Haupt, 2004]. Table 6.7 summarizes the

values of parameters and inputs of Algorithm 2 in our GA experiments.

To provide a better comparison, we ran two sets of GA experiments, one without crossover and

the other with it. We ran the GA experiments on the same Linux cluster at the CUNY Graduate

Center and plotted in the usual way the daily scores of the four fixed market mechanisms and the

top Hall of Famers over time. Figures 6.7 and 6.8 show the results of the two sets of GA experiments

together with that from the initial set of grey-box experiments. All the results are averaged over 40

74As the Hall of Fame is empty at the beginning of each GA experiment, the first CAT game includes four individuals
from the population, so the total number of games to evaluate the 20 generations is actually 199. But the difference of
one game can be negligible. In theory, it is possible to design the experiments to run exactly the same number of CAT
games as long as num of generations×size of population= 402 and size of population%2 = 0, however
the integer solutions—201 and 2, or 67 and 6—to this equation are not practical for the GA as size of population

is too small.
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Table 6.7: The values of parameters and inputs of the GA experiments.

Parameter/Input Value

num of generations 20
size of population 20
num of samples 2
num of hof samples 2
capacity of hof 10
num of policytypes 5
re 0.1
rco 0.7
rm 0.05
τ† 0.3
α† 1
FM {CHl , CHh, CDAl , CDAh}

† τ and α are parameters in the softmax solver used by the Select(HOF, num of hof samples)

function, identical to τ1 and α1 that are listed in Table 6.1 for the Select(HOF,
num of hof samples) function in the grey-box search.

runs. Note that the x axes in the subfigures are step (as in the grey-box experiments), or equivalently

the number of games that have been run, rather than generation that is common in plotting results

from GA experiments. This presentation aims to make it easier to compare the results of the GA

experiments with those from the grey-box experiments.

Plots in Figures 6.7a and 6.7b, from the two sets of GA experiments respectively, exhibit the

similar pattern as those in Figure 6.7c, which are from the initial grey-box experiments. The scores

of the four fixed market mechanisms are at approximately the same positions across the three cases

and then all descend until they settle down around certain values. These market mechanisms ended

up with the same relative ranking positions in these different cases. The difference is that in the

end each of the four market mechanisms settles down with different scores in different cases, the

highest in the GA without crossover and the lowest in the grey-box search. This suggests that
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(a) GA without crossover.
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(b) GA with crossover.
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(c) Greybox.

Figure 6.7: Scores of the four fixed market mechanisms in the two sets of GA experiments, one
without crossover and the other with crossover, and those in the first set of grey-box experiments,
each averaged over 40 runs. (c) is identical to Figure 6.2a.

the auction mechanisms explored in the grey-box experiments are overall the most competitive

while those explored in the GA experiments without crossover are the least competitive. This

further indicates that the grey-box search is more effective than both versions of the GA search and

as expected crossover plays an important role in the GA. Figure 6.8 indicates exactly the same.

Figures 6.8a and 6.8b, from the two sets of GA experiments respectively, show that the scores of

the Hall of Famers increase dramatically at the beginning of the experiments and flatten out at the

end around certain positions that are lower than those in Figure 6.8c.

Table 6.8 lists respectively the average scores of the best fixed market mechanism, and the

best and worst Hall of Famers at the end of the two versions of GA experiments and the grey-

box experiments. At the 95% confidence level, any two values in the second row or any two

values in the third row are significantly different from each other. That is to say that the Hall of

Famers produced by the grey-box experiments are significantly better than those produced by the

GA experiments. The scores of the best fixed market mechanism in the three cases agree to this

finding, but they are not significantly different. This less significance is possibly due to the fact that

the CAT game is not a zero-sum game, since the transaction success rate of a marketplace in a CAT
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Figure 6.8: Scores of the Hall of Famers in the two sets of GA experiments, one without crossover
and the other with crossover, and those in the first set of grey-box experiments, each averaged over
40 runs. (c) is identical to Figure 6.2b.

game is relatively independent from the performance of its opponents, which counts for one third

of its total score. Thus the gain of a stronger market mechanism does not necessarily mean the

same amount of loss of the losing mechanism given that all the rest of the configuration remains

the same.75

To further investigate the effectiveness of the grey-box search in comparison with the GA

search, we ran additional experiments to let the Hall of Famers produced by the grey-box experi-

ments and the two sets of GA experiments compete against each other directly. Each of the three

sets of experiments produced dozens of the Hall of Famers (69 from the grey-box experiments, 45

from the GA experiments without crossover, and 71 from the GA experiments with crossover).76

We ran 100 CAT games with eight market mechanisms in each game, which includes two of the

fixed market mechanisms, CDAl and CHl , and two randomly selected market mechanisms from

each of the three set of Hall of Famers. Other than this, the CAT games are configured exactly the

same as we did in the grey-box experiments and the GA experiments. Table 6.9 lists the average

75One example is that the scores of CDAh and CHh flatten out much earlier during the experiments than the scores
of CDAl and CHl in all the three cases in Figure 6.7.

76A Hall of Famer may come from more than one run of the same experiment.
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Table 6.8: The average daily scores of the best fixed market mechanism and the best Hall of Famers
in the CAT games at the end of the GA experiments, and those at the end of the first set of grey-
box experiments. In parentheses are the standard deviations. The scores in the second row are
significantly different from each other at the 95% confidence level and so are those in the third
row.

Market mechanism GA without crossover GA with crossover greybox†

Best fixed mechanism (CDAl) 0.3260 (0.0224) 0.3203 (0.0230) 0.3101 (0.0659)
Best Hall of Famers 0.4275 (0.0233) 0.4496 (0.0340) 0.4652 (0.0210)
Worst Hall of Famers 0.3389 (0.0255) 0.3554 (0.0192) 0.3790 (0.0219)

† The values in this column are originally from Table 6.2.

Table 6.9: The average daily scores of the Hall of Famers produced by the GA experiments and
the first set of grey-box experiments in direct competition in CAT games. In parentheses are the
standard deviations. The scores are significantly different from each other at the 95% confidence
level.

GA without crossover GA with crossover greybox

0.3481 (0.0201) 0.3643 (0.0188) 0.4155 (0.0291)

daily scores of the three set of market mechanisms. At the 95% confidence level, the scores of the

Hall of Famers from the grey-box experiments are significantly higher than those from either set

of the GA experiments.

Section 6.4.2 showed that the grey-box search was able to find mechanisms that are stronger

than well known double auction mechanisms when competing directly in CAT games and are bet-

ter than mechanisms that were reported in the literature in term of various economic properties.

Section 6.4.3 examined the sensitivity of the grey-box search to the changes of parameter values

and confirmed that the grey-box search can consistently produce similar results when, for example,

the capacity of the Hall of Fame varies. This section provides one more piece of evidence for the

superiority of the grey-box approach by comparing the results of the grey-box experiments and
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those of experiments based on different versions of the classic GA.77

6.5 Experiment Set II: Learning against entries from CAT 2009

As the mechanisms we found in the first set of grey-box experiments fail to win over entries in CAT

2009, we carried out a second set of grey-box experiments to show how the grey-box approach

scales by searching in an extended space that includes policies used in the auction mechanisms of

strong entries from CAT 2009. Although there is no formal guarantee, we do expect, in running the

second set of grey-box experiments, either to find mechanisms that are able to beat all CAT 2009

entries in a reproduced competition or to confirm that certain entries from CAT 2009 are indeed

strong and are identified among the best mechanisms found in the search.

6.5.1 Experimental setup

When a grey-box search fails to produce mechanisms that meet our goal, just as the mechanisms

we found in the first set of experiments are unable to win in the reproduced CAT 2009 competition,

there are at least two improvements we can make: first to introduce new auction policies into the

search space, and second, to use stronger mechanisms in the fixed set of market mechanisms. We

consider both types of improvement in the second set of grey-box experiments.

Although the search space in the first set of experiments already includes a variety of policies

and some of them are further parameterized, all these policies are simple and fixed, and do not

adapt over time within a duration of a single CAT game. The entries in the actual CAT competitions,

on the other hand, often adapt the values of parameters in their policies, or switch to different

77We actually ran additional sets of GA experiments with crossover, each with a different crossover rate, 0.1, 0.4, or
1.0, in contrast to 0.7 that was used in the GA experiments described in the text. It turned out that the GA experiments
using 0.7 produced the best results and hence only the results of this set of experiments were included in the text in
the comparison against those of the grey-box experiments.
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policies over time in response to the adaptation of their opponents [Niu et al., 2008b]. Intuitively,

to combat against these complex mechanisms, the policies in our space should incorporate compa-

rable complexity. As our focus in the work of grey-box search is how to automatically search for

effective combinations of building blocks, we do not endeavor to design new, complex building

blocks manually, which is contrary to our intention of having an approach of automated design.

What we can do however is to directly incorporate policies used by these CAT 2009 entries into our

search space.

We intended to incorporate at least policies used by those entries that ranked higher than the

mechanisms we found in the first set of experiments as shown in Table 6.12a, including Mertacor,

cestlavie, IAMwildCAT, jackaroo, UMTac. Both IAMwildCAT and UMTac however include a

graphical component, which will make it impossible to run grey-box experiments on our cluster

iteratively. So we eventually considered policies used by the other three entries.

Mertacor relies upon collecting information about shouts and transactions in the marketplaces

regulated by its opponents. This is different from all the mechanisms we considered so far, in

which only information from the corresponding marketplace itself is collected and used in its

decision making. We introduce a new type of auction policy into the parameterized framework

presented in Section 6.2 that regulates this aspect. We call the new type of policy a subscribing

policy, denoted as S, and the default choice, self subscribing or SS.

Policies used by the three CAT 2009 entries are either among those we introduced previously

or their own brew. We name policies in the latter case in such a scheme as, for example, Gaj for the

charging policy of jackaroo and Sam for the subscribing policy of Mertacor.

We also introduce a new matching policy, adaptive matching or MA, which is a variant of MT.

MA sets its parameter θ at 0 to clear the market at the equilibrium point in the first few rounds of a

day and increases the value of θ modestly in later rounds of the day so as to increase the transaction
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Figure 6.9: The extension of the search space of double auctions in the second set of grey-box
experiments.

success rate.

We add all these new policies into the search space and depict this extension of the tree model

in Figure 6.9. The three CAT 2009 entries can thus be represented respectively as follows:

Mertacor = ME + Q* + Aam + Cam + Pam + Gam + Sam

cestlavie = ME + Q* + AEw=10,δ=25 + CPp=0.7 + Pac + Gac + SS

jackaroo = ME + QT + Aaj + CR + Paj + Gaj + SS

where Q* represents an arbitrary quote policy as neither Mertacor nor cestlavie uses the market

quotes.

In addition to extending the search space, we replace three members in the fixed set of market

mechanisms in the first set of experiments with Mertacor, cestlavie, and jackaroo, and keep

the best one, CDAl , only. Stronger fixed market mechanisms may help to speed up the search in the

extended space and to some extent avoid the search being trapped in local optima.

The second set of grey-box experiments are set up in a similar way to the first set of experiments

except that each run of the grey-box experiments lasts 600 steps as the search space is bigger and

the fixed market mechanisms are more difficult to beat. Table 6.10 lists the part of configuration

that differs from that in the first set of experiments.
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Table 6.10: The values of parameters and inputs of the GREY-BOX-AMD algorithm in the second set
of grey-box experiments that differ from those in the first set of experiments.

Parameter/Input Value

num of steps 600
FM {Mertacor, cestlavie, jackaroo, CDAl}

Table 6.11: The average daily scores of the best fixed market mechanism and the best and worst
Hall of Famers in the CAT games at the end of the second set of grey-box experiments.

Market mechanism Mean SD

Best fixed mechanism (Mertacor) 0.4628 0.1216
Best Hall of Famers 0.4708 0.0197
Worst Hall of Famers 0.3488 0.0200

6.5.2 Experimental results

As previously, we generate the plots of the scores of the fixed market mechanisms and the Hall

of Famers in the second set of grey-box experiments averaged over 30 runs, which are shown in

Figure 6.10. The best member of the fixed set of market mechanisms in the first set of experiments,

CDAl , achieves the lowest score as we expected among the new fixed set of market mechanisms,

0.1795 at the last step, which is much lower than its score in the first set of experiments, 0.3101.

Also unsurprisingly, as shown in both Figure 6.10 and Table 6.11, Mertacor obtains the highest

score among the fixed set of market mechanisms, 0.4628 at the last step. This score is slightly

lower than the score of the top Hall of Famers, 0.4708, however the difference is not significant at

the 95% confidence level.

Further examination of the Hall of Famers from the 30 runs of the grey-box experiments shows

that the mechanism of Mertacor was picked as the top Hall of Famer in steadily more runs over
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(a) Fixed market mechanisms.
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(b) Hall of Famers with the best at the top and the worst at
the bottom.
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(d) The best Hall of Famer(s).
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(e) The worst Hall of Famer(s).

Figure 6.10: Scores of market mechanisms in the second set of grey-box experiments across 600
steps, averaged over 30 runs.

time and was picked in almost half of the runs by the end of the experiment (Figure 6.11). The

mechanisms that are identified as the top Hall of Famer at the last step in the other runs, though

not identical to the mechanism of Mertacor, adopt many of the individual policies of Mertacor:
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Figure 6.11: The number of runs of grey-box search out of a total of 30 runs in the second set of
grey-box experiments that pick Mertacor as the best mechanism.

HM0 = ME + Q* + Aam + Cam + Pam + Gac + Sam

HM1 = MA + Q* + Aam + Cam + Pam + Gam + Sam

HM2 = ME + Q* + AS + Cam + Pam + Gam + Sam

HM3 = MTθ=0.2 + Q* + Aam + Cam + Pam + Gam + Sam

where bold indicates the policies that differentiate the mechanisms from that of Mertacor. HM1

and HM2 appeared in five and nine runs respectively while HM0 and HM3 appeared in a single run

each.

In the same way as we examine the performance of the mechanisms we found in the first set of

experiments, we ran a reproduced CAT 2009 competition between the CAT 2009 entries and the Hall

of Famers listed above. Table 6.12b shows the cumulative scores of these mechanisms averaged

over ten games. Mertacor still claims the victory, but it scores much less this time than previously

if we compare Table 6.12b with Table 6.12a. This is to a great extent due to the strong competition

from HM0 – HM3, which are virtually variants of Mertacor itself.78 These Mertacor variants take

78This is also to some extent due to a larger set of players in the games.
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Table 6.12: The scores of market mechanisms in the CAT games including the best mechanisms
from the grey-box experiments and entries from CAT 2009, averaged over ten CAT games in both
cases.

(a) With mechanisms from the first set of ex-
periments.

Mechanism Score SD

Mertacor 241.5715 10.5360
cestlavie 178.8957 3.3455
IAMwildCAT 171.4209 8.3065
jackaroo 161.3124 13.0854
UMTac† 158.6552 7.7849
SM88.0 157.4959 7.9758
SM127.1 150.6758 12.5501
SM7.1 149.7483 15.1307
CUNY.CS 137.5801 5.6975
PSUCAT 134.5170 11.1125
TWBB‡ 113.2514 19.8423

(b) With mechanisms from the second set of
experiments.

Mechanism Score SD

Mertacor 176.5365 24.1721
HM2 176.4945 20.6140
HM3 156.1061 21.1483
HM1 152.3192 18.0645
HM0 152.1263 27.6663
cestlavie 126.8365 14.6078
IAMwildCAT 114.6787 18.2257
jackaroo 114.5572 8.4117
CUNY.CS 93.2921 6.5482
UMTac† 91.5155 17.1831
PSUCAT 90.6562 22.9281
TWBB‡ 68.0193 17.6970

† UMTac from CAT 2009 uses fuzzy logic in its mechanism and has a graphical interface to accept certain
parameters. As we do not know what parameters should be used, we ran UMTac simply without setting
those parameters. It may perform better if the parameters are properly set.

‡ TWBB from CAT 2009 requires a MySQL database in its market making. We were not able to run this
on the cluster where we ran the experiments, so the scores of TWBB may not reflect its full capabilities.

the second place through the fifth, pushing down those entries that performed well previously, such

as cestlavie, jackaroo, and IAMwildCAT. These observations, together with the high scores of

Mertacor as shown in Figure 6.10a, suggest that Mertacor may be the best mechanism that can

be found in our extended space of auction mechanisms for CAT games. It also suggests that the

competitiveness of Mertacor in CAT games is attributed to its mechanism as a whole and does not

hinge upon one or two individual policies alone, as replacing one policy in the mechanism tends

to lower the performance of the overall mechanism. It is noteworthy that the score of Mertacor is

very close to that of the runner-up, HM2. This indicates that Aam, the only policy that distinguishes
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Mertacor from HM2, brings little improvement to the mechanism of Mertacor compared to the

known policies like AS in HM2.79

Overall, identifying Mertacor as potentially the best mechanism in the search space suggests

that our grey-box approach is effective in exploring the search space and scales well when new

building blocks are introduced into the search space.

79Aam is actually a hybrid of AS and AE. It behaves in the same way as AS most of the time and switches to AE only
for new shouts that are placed during a certain period of time in a game.



Chapter 7
Related work, future work, and conclusions

This chapter further discusses resemblances and differences between the pieces of our work that

were described in previous chapters and related work in the literature, then outlines several pieces

of potential future work, and finally concludes this dissertation.

7.1 On experimental approaches to mechanism design

The work that was presented in this dissertation falls into the area called agent-based computa-

tional economics [Tesfatsion, 2006], or the one that covers a broader range of topics, experimental

economics [Roth, 1988; Smith, 1982] in the language of economists. The typical methodology in

the area is that experiments are used to validate economic theories and construct market mecha-

nisms through simulations. Although it is common in orthodox economics to assume that mech-

anism design can be done without experiments, experimental approaches play an important role

in validating mechanisms that are based on game theoretic analysis and in turning a conceptually

simple design to a complex, operational system. An example is the design of the FCC spectrum auc-

tions in which electromagnetic spectrum licenses were auctioned to competing service providers.

131
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According to the accounts of Nik-Khah [Nik-Khah, 2005], the design of the FCC spectrum auc-

tions was an mixture of efforts from various parties with different backgrounds, including ortho-

dox economists who believed in game theory as well as experimentalists. Although most of the

competing proposals for the design of the auctions were from game theorists, including the design

that was accepted by the FCC eventually and that was from John McMillan of the University of Cal-

ifornia San Diego, who was hired by the FCC to deliver an independent perspective, the winning

design, one that game theorists claimed to be “simple and would not require the use of specialized

auction software”, could not be put into use until additional contracts were issued to a group of

experimentalists to turn the “simple” design into an operational one. Ironically, among these ex-

perimentalists were John Ledyard and David Porter of Caltech, who were involved in preparing

the proposal from the NTIA80 which advocated a fully-operational electronic auction. Indeed, as

Plott [Plott, 1997, Page 637] pointed out:

While the use of laboratory experimental methodology is still in its infancy, it

seems clear that the value of the techniques was decisively demonstrated in the devel-

opment of the FCC auctions.

Market mechanisms used to be processes of human interaction, processes of “collecting bids and

reporting back the information described above” [Milgrom and Wilson, 1993], but are more and

more becoming automated processes that comprise a system of computers and software [Kephart,

2002; Mirowski, 2007; Schwartz et al., 2006a]. Software agents, acting on behalf of human owners,

have limited resources at their disposal and limited access to information, and so have a limited

capability of making rational decisions in the economy. Experiments based on software agents or

human subjects are ideal tools to address issues that cannot be addressed in game theory, where

players in a game are typically assumed to be rational and have unlimited computational resources

80The federal agency that regulates the governmental use of spectrum.
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and access to information.

The role of computer science is not just running simulations to justify designs by game the-

orists. Once a marketplace and its patrons are all computerized, advanced methods and tools

from computer science can be used to do what cannot be done otherwise. Just as in the case of

bioinformatics, which took shape and boomed after information from genetic materials could be

digitalized, a computerized economic system leaves the door wide open to carry out the kind of

work presented in this dissertation. Furthermore, computational economics is useful not just in

scenarios where trading and commerce occur in the first place, but also in solving, for example,

many optimization problems in computer science, where the concept of markets was irrelevant

originally [Wang et al., 2011; Yeo and Buyya, 2006].

7.2 On marketplaces running in parallel

Our work in this dissertation concerns multiple marketplaces running in parallel. Ladley and Bul-

lock [Ladley and Bullock, 2005] studied the market dynamics involving multiple marketplaces as

well, but their work differed from ours on multiple aspects. First, they were concerned with the

information available to traders. Traders in their analysis—homogeneous ZIP ones—were each

fixed to a certain location in a spatial network and could only trade with and receive information

from their neighbors, while traders in our work, though spreading across multiple marketplaces

in a similar way, have different capabilities of making offers as they use heterogeneous trading

strategies and have the capability of moving between these marketplaces based on their desire to

maximize their profits. Second, Ladley and Bullock were concerned with how the different levels

of traders’ accessibility to market information affected the convergence of the whole market to the

theoretical equilibrium, while our work focuses upon whether the movement of traders and the

information they obtain by moving around the marketplaces help to differentiate the properties of
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those marketplaces. Third, Ladley and Bullock constantly used a single classic CDA mechanism

in their experiments, which was identical to the one used by Cliff and Bruten [Cliff and Bruten,

1997], while our work involves multiple marketplaces in direct competition that are each associ-

ated with an auction mechanism and our work is concerned with how to design effective auction

mechanisms to regulate a marketplace and win the competition. In addition, our open source JCAT

platform supports traders being able to subscribe for market information by paying a fee and all

requests for subscription are permitted without constraint. This design can be easily extended with

a spatial constraint, allowing traders to receive information about others that are close to them only,

as in [Ladley and Bullock, 2005]. This extension would make it possible to carry out the kind of

work by Ladley and Bullock using JCAT, in which a comprehensive collection of trading strategies

and auction mechanisms are available for use.

Our work also has similarities to that of Greenwald and Kephart [Greenwald and Kephart,

1999]. In the latter, shoppers choose between different merchants, and the merchants set prices

that depend on the prices set by other merchants. Here shoppers and merchants are respectively

analogous to traders and specialists (or marketplaces) in CAT games in our work. While some

of the results obtained by Greenwald and Kephart, especially the price wars induced by myopic

price-setting, look similar to some of ours, the scenario we are considering is considerably more

complex. The traders in our scenario learn over time using their profits in the marketplaces as

feedback in selecting marketplaces while the shoppers in Greenwald and Kephart’s scenario either

choose a merchant randomly or choose the merchant that offered the lowest price. The expected

return of choosing a marketplace in our work is non-deterministic and hinges upon various factors

that a trader has no way to know exactly about in advance or at all, e.g., other traders that go to

the marketplace at the same time and the mechanism adopted by the marketplace. In contrast,

shoppers in the work of Greenwald and Kephart know exactly about their utilities if they choose
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to buy from a particular merchant in the retail market. Indeed, the transaction prices are set by the

merchants in this scenario, while in our case the prices are determined by the traders. As a result,

when traders pick a marketplace in our scenario, they do not know for sure if they will even be

able to trade, much less about the price at which goods will change hands. From the perspective of

the marketplaces, it is possible to attract many traders who, because of their values for the goods

being traded, do not end up trading. The effect of these subtleties is worth further investigation.

Trading agents in our experiments choose marketplaces based on their experience of past prof-

its rather than their knowledge of the concrete auction rules used in the marketplaces. A related,

but different, line of work is how to present auction mechanisms that are machine understandable

so that trading agents can deduct the game theoretic properties of these mechanisms by them-

selves and take optimal actions hereafter. For example, Tadjouddine et al. [Tadjouddine et al.,

2008] explored how to verify the strategy-proof property of an auction mechanism represented

in a certain, formal, fashion with model-checking techniques. Although this approach utilizes

more information about an auction mechanism in decision making and helps to reduce the cost of

trial-and-error behaviors, it has the same limitation as the traditional, analytic, approach to mech-

anism design, i.e., being applicable only to auction mechanisms that are tractable theoretically.

Some other work concerns market selection based on different criteria or feedback. For example,

Ganchev et al. [Ganchev et al., 2010] very recently discussed an algorithmic trading problem with

censored feedback: how to spread big-block trades across multiple dark-pool stock markets. They

are concerned with how much liquidity each market has and how to spread the requests of trades

in a way so as to maximize the volume of successful trades regardless of the relative profit that is

made in doing so.
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7.3 On evolutionary approaches to automated design

We can also compare our grey-box approach to prior work on automated auction mechanism and

trading strategy acquisition based on simple GAs, including Cliff et al. [Cliff, 2003] and Phelps et

al. [Phelps et al., 2006]. A simple GA, or SGA, evolves genomes, or binary strings, using selection,

crossover, and mutation operators, while the grey-box approach evolves a vector of quality scores,

each for a pre-defined building block, and explores the solution space by biasing those building

blocks that lead to better solutions. A SGA maintains a set of sampling points in the solution space

and tries to arrive at points of higher fitness that are accessible by applying the operators, while

the grey-box approach tends to view the solution space along multiple dimensions simultaneously,

maintain a hyperplane that divides the solution space into slices, adjust the sizes of the slices, and

identify and explore more in those of high fitness.

A popular theory that intends to explain the effectiveness of SGAs in many optimization do-

mains is the building block hypothesis, or BBH [Holland, 1975; Mitchell et al., 1991]. The BBH

argues that certain building blocks of low order and low defining length, called schemata,81 in the

genome play a substantial role in constructing genomes of high fitness. The operators of SGAs

enable the process to concentrate sampling in subspaces that are identified by these schemata and

further in the common areas of these subspaces that have increasing fitness through mixing dif-

ferent schemata. Based on this argument, Thierens and Goldberg [Thierens and Goldberg, 1993]

indicated that computational expense grows exponentially with the difficulty of the problem, in

terms of the number of schemata and the orders of schemata. Efforts have been made to address

this issue with SGAs and improvements to SGAs were proposed by either explicitly exploring to

identify schemata or implicitly using special operators to avoid breaking possible schemata in the

81A schemata is typically represented in the form, for example, ****01*1***, where * can match 0 or 1. The
defining length of a schemata is the maximal distance between bits with deterministic values, and the order of a
schemata is the number of bits with deterministic values.
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sampled solutions [Chen and Goldberg, 2005; Goldberg et al., 1989; Li and Goodman, 2008]. The

grey-box approach has similarities to these advanced GAs82 since the grey-box approach explicitly

considers the building blocks for auction mechanisms and biases its search towards the corners in

the search space that correspond to high quality blocks.

The idea of our approach is in particular similar to that of the compact GA , or CGA, which was

introduced by Harik et al. [Harik et al., 1999]. A CGA represents the population as a probability

vector, rather than as a set of binary strings, where the ith component of the probability vector gives

the probability that the ith bit of an individual’s genome is 1. Compared with SGAs, CGAs have

compact representations and work well in practice. The view of evolving a vector of real-valued

quality scores in our grey-box approach (and the use of a real-valued array of probabilities in the

CGA) should be distinguished from real-coded genetic algorithms [Goldberg, 1990]. In the former

case, the vector of real numbers maintains a global view of the conceived fitness landscape of the

problem domain or can be considered as a summary of the whole population of individuals if such

a population exists, while in the latter case, a vector of real-coded values uniquely determines an

individual in the solution domain and one only sees a global view of the fitness landscape when

considering all the individuals and their fitness values.

Another topic in evolutionary computation that is related to grey-box search is the problem of

early convergence to suboptimal solutions. In the grey-box experiments, parameters of the softmax

exploration method in the n-armed bandit problem solvers were carefully set up so that sampling

in the search space starts with near randomness and gradually biases modestly towards areas that

are fitter than others. More details can be found in Section 6.4.1. Techniques employed in evolu-

tionary computation to address the problem of premature convergence, including fitness sharing,

crowding, and mutation with high rate, are based on similar considerations [Holland, 1975; Sareni

and Krähenbühl, 1998]. For example, fitness sharing lowers the fitness of an individual by a cer-
82These are sometimes called competent genetic algorithms.
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tain amount, which basically reflects the number of similar individuals in the population, so that

similar individuals with high fitness will not be able to prevail in the next generation. In so doing,

the whole population could remain diverse, approaching multiple optima in the space in parallel

if applicable. In fact, as a piece of future work, these techniques can be incorporated into the GA

experiments in the previous chapter to see if the experiments can produce similar or even better

results than the grey-box experiments.

Our grey-box approach should be distinguished from Ronald A. Fisher’s work in population

genetics [Burjorjee, 2008]. Fisher, in his research on Mendelian inheritance, assumed that—as

paraphrased by Sewall Wright83—

. . . each gene is assigned a constant value, measuring its contribution to the char-

acter of the individual (here fitness) in such a way that the sum of the contributions of

all genes will equal as closely as possible the actual measures of the character in the

individuals of the population.

Wright disagreed with the view of the linear additive contribution of genes and insisted that, based

on his experimental work, genes favorable in one combination are extremely likely to be unfavor-

able in another. Our grey-box approach is not based on Fisher’s argument, although the vector

of quality scores undoubtedly converges and better auction policies would obtain higher scores if

the argument holds in the case of auction mechanisms. When the argument does not hold, which

we believe is the case based on our experience with the experiments described in Chapter 5, our

grey-box approach may help to obtain insights on which auction policies can make better or bad

combinations, and on how to design new, better policies that work better with others.

Finally, the tree-based model of auction mechanisms in our work bears similarities on the

surface to the tree structures in genetic programming, though the tree structure in the former case

83A co-founder of the field with Fisher and a critic of Fisher’s approach.
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represents the whole search space and quality scores of building blocks reflect the fitness landscape

of the space while tree structures in the latter each represent one individual in the search space and

contains no information themselves about how fit they are.

7.4 On the generalization properties of auction mechanisms

We showed in the previous chapter that the grey-box approach to automated auction mechanism

design was able to acquire mechanisms that perform well against classic DA mechanisms and CAT

entries in CAT games and produce desired economic properties when they run in isolation. This

however comes with no formal guarantees that the effectivenesses of these acquired mechanisms

are general enough so that the mechanisms perform well in some other scenario where a different

set of assessment criteria is used. Indeed, Robinson et al. [Robinson et al., 2010] examined the

generalization properties of certain entries from CAT 2008 and CAT 2009 and they showed, as we

expected, that the rankings of these entries in recreated CAT competitions may change when they

face different opponents or when the market is populated by a different set of traders.

It is no doubt desirable to design a mechanism that can fit into all kinds of scenarios, and

this is possible in some cases. One such example can be found in the work by Sandholm et al.

on automated mechanism design [Conitzer and Sandholm, 2003, 2004; Sandholm, 2003], where

they, as we do in this dissertation, view automated mechanism design as a search problem, and

try to design entire auction mechanisms subject to absolute guarantees on their performance, e.g.,

mechanisms that are strategy-proof and make traders bid truthfully. Such mechanisms, if they

exist, would produce guaranteed performance when the traders in the market are well-informed and

rational, as the optimal strategy of these traders, simply telling the truth, is known. Nevertheless,

mechanisms with such properties or properties like strategy-proofness may not exist or may be

difficult to find in many scenarios. Even when such a mechanism does exist, its deployment may
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come at a high cost. For instance, typical DAs are not strategy-proof; McAfee [McAfee, 1992]

derived a type of DA that is strategy-proof but it comes at the cost of lower allocative efficiency.

A practical approach to mechanism design may be to treat the problem as an ‘engineering’

one [Roth, 2002] and solve it with the aid of experimental methods and tools like the grey-box

search and JCAT. Although the experimental approach comes with no formal guarantees [Phelps

et al., 2007], it is able to produce good, if not optimal, solutions to a specific version of the problem

even when the problem is theoretically intractable with formal analysis. Later on, when the specifi-

cation of the problem changes, the solutions can be tweaked accordingly or be used as the starting

points to search for solutions to the current version of the problem, thus forming a ‘step-wise

iterative’ process [Phelps et al., 2010].

7.5 Future work

There are limitations in our approach and experiments, which motivate several pieces of future

work. First, we update the quality scores of building blocks in a mechanism equally—every

building block receives exactly the same feedback regardless of their contributions—and inde-

pendently—there is no record whether positive or negative feedback comes contingent upon the

existence of another policy in the mechanism. This may lead to ineffective feedback and ineffi-

cient exploration. One improvement is that heuristic rules may be applied to generate different

feedback for updating quality scores of different building blocks in a mechanism. For instance, a

mechanism that obtains a bigger profit share than its opponents in a CAT game and charges only

on shouts may either have charged higher fees or have had more shouts placed in the market. As a

result, stronger feedback should be given to its charging policy and shout accepting policy than to

other parts of the mechanism. Another improvement is that combinations of building blocks may

be viewed as composite building blocks and added into the tree model in Figure 6.1, which helps
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in recognizing symbiotic building blocks. Auction policies listed in Section 6.2 and those intro-

duced in Section 6.5.1, more often than not need cooperation of certain other policies, and their

contributions to the performance of a market mechanism may hinge on the existence of their coop-

erative, partner policies. Strong mechanisms are certainly potential places where such symbiotic

relations take place. We may add possible combinations of building blocks from these mechanisms

into the tree as new branches, and later on identify those mistaken combinations and cut them off

using reinforcements from other mechanisms. Here we do not mean to explore all possible com-

binations. After all, that will lead to an exponentially large search space and does not differ, in

essence, from an exhaustive search. What we intend to do is to leverage symbiosis between build-

ing blocks, to some extent, so as to produce more accurate causal feedback and explore the space

more effectively. The work on linkage learning in evolutionary computation, e.g., [Harik, 1997;

Watson et al., 1998; Watson and Pollack, 2000] addresses the issues that may arise in this effort

and provide guidance.

Second, different runs of the grey-box experiment very likely produce different sets of Hall of

Famers and the total number of Hall of Famers from dozens of runs will be hundreds. The three

market mechanisms from the first set of grey-box experiments were chosen rather arbitrarily from

the 400 Hall of Famers we obtained from 40 runs, and the top Hall of Famers from the second set

of experiments won out after a series of games for which the set of players are composed rather

randomly. A question that arises is how to choose the best of the best in the end as the output of the

grey-box experiments. One way to do so is to use the EGTA approach described in Section 3.2.2

and follow an iterative process that is similar to the one in [Schvartzman and Wellman, 2009b] to

obtain those Hall of Famers that are more robust than others. The small set of Hall of Famers that

are obtained this way may be further used as the fixed markets in another iteration of grey-box

experiments so that better mechanisms used as targets may lead to new better mechanisms over
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iterations.

Third, the fact that new mechanisms that we obtained through the grey-box experiments failed

to win games against entries from CAT 2009, Mertacor in particular, suggests that novel, better

building blocks should be introduced into the pool of building blocks so that better mechanisms

can be constructed. Designing brand new building blocks requires domain knowledge and does not

contribute much to the state of the art in a broad range of research fields, however more intelligence

and complexity can be incorporated by supporting building blocks of some type that mixes the ex-

isting ones of the same type. There are at least two kinds of mixing: concurrent and sequential.

A concurrent mixed block selects one of multiple component blocks stochastically with a distribu-

tion of probabilities to fulfill its task, as in the concept of mixed strategies in the context of game

theory, while a sequential mixed block keeps using one particular pure block over a period of time

and switches to another for the next period. Indeed, these two kinds of mixing methods can be inte-

grated in the framework of Markov decision processes in reinforcement learning. These RL-based

mixed building blocks are able to significantly contribute to the variety of auction mechanisms, no

matter whether these blocks are fixed or allowed to adapt after being incorporated into an auction

mechanism. One piece of work that is related to this is [Darwen and Yao, 1997], where a genetic

algorithm was used to acquire diverse, simple strategies for the Iterated Prisoner’s Dilemma Tour-

nament and these strategies were then combined to form a meta strategy which chooses the best

response among these strategies based on its recent interaction against its opponent. This work

provides insights upon how simple solutions can be utilized to build composite, adaptive solutions,

although the much more complex interactions in CAT games present challenges.

Fourth and finally, we may allow the strategies of traders to evolve in parallel to the market

mechanisms. We have used a fixed set of trading strategies in both the CAT games during the

grey-box experiments and those CAT games against entries into prior CAT competitions. In the
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real world, traders tend to adapt their strategies based on their experience so as either to take

advantage of weaknesses of market mechanisms or to behave more robustly. To this end, we

can model the search space of trading strategies as a tree similar to the grey-box approach to

auction mechanism design. The existing trading strategies in the literature, their implementations

in JCAT, and prior work on trading strategy acquisition [Phelps et al., 2005; Schvartzman and

Wellman, 2009b] together make this task easier. Then two search processes, one in the space

of auction mechanisms and the other in the space of trading strategies, can run alternately and

iteratively, forming a co-evolutionary process. That is, for example, at one step, we fix the space

of trading strategies, generate a population of trading agents according to the landscape that is

defined by the quality scores of building blocks of trading strategies, and allow exploration in

the space of auction mechanisms through CAT games using those trading agents until a good set

of Hall of Famers are obtained or the search reaches a plateau based on certain criteria. At the

next step, we fix the space of auction mechanisms, run parallel marketplaces using the Hall of

Famers obtained from the previous step, and allow exploration in the space of trading strategies.

These alternate and iterative steps may run either for a number of iterations or until the search

process in one of the two search spaces stops producing significantly different landscapes at two

adjacent exploration steps. Given the large number of possible strategies and auction mechanisms,

solution concepts like Nash equilibrium as used in [Schvartzman and Wellman, 2009b] may not be

readily applicable in this scenario. Prior work on co-evolutionary computation using competitive

games, e.g., [Rosin, 1997], might shed light on how to proceed in this direction. The interaction

between marketplaces and traders involves open-ended problems, while the work in [Rosin, 1997]

considered problems of less complexity or solutions that can fit into a limited representation. We

believe that the alternate, iterative approach is promising to help obtain insights into the complex

interaction between markets and trading agents, especially how one side responds to the changes



CHAPTER 7. RELATED WORK, FUTURE WORK, AND CONCLUSIONS 144

on the other side, a topic on which so far as we are aware, little work has been done.

7.6 Summary and Contributions

This dissertation describes a practical approach to the automated design of complex mechanisms.

This approach breaks a mechanism down into a set of components each of which can be imple-

mented in a number of different ways, some of which are also parameterized. Given a method

to evaluate candidate mechanisms, the approach then uses reinforcement learning to explore the

space of possible mechanisms, each composed from a specific choice of components and parame-

ters. The key difference between this approach and previous approaches to this task is that the score

from the evaluation is not only used to grade the candidate mechanisms, but also the components

and parameters, and new mechanisms are generated in a way that is biased towards components

and parameters with high scores.

The specific case-study that we used to develop our approach is the design of new double

auction mechanisms. Evaluating the candidate mechanisms using the infrastructure of the CAT

tournament, we showed that we could either learn mechanisms that can outperform the standard

mechanisms that were used to evaluate the learned mechanisms and the best entries from past CAT

competitions or confirm the high competitiveness of a known mechanism in the search space. We

also showed that the best mechanisms we learned could outperform mechanisms from the literature

even when the evaluation did not take place in the context of CAT games. Additional comparisons

demonstrated that the grey-box experiments were able to produce significantly better results than

experiments using the GA. These results make us confident that we can generate robust double

auction mechanisms with the grey-box approach and that the grey-box approach is an effective

approach to automated mechanism design.

The grey-box search also has potential in identifying weaknesses of a particular mechanism.
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Mechanisms like the CDA and CH mechanisms, for example, were used in some of our grey-box

experiments to evaluate and acquire effective auction mechanisms. This arrangement can be em-

ployed in such a reverse manner so that the sampled mechanisms from the search space can be

viewed as ‘attackers’ that help to thoroughly examine aspects of those fixed mechanisms. For in-

stance, if we find in a CAT game that a fixed mechanism receives a score that is much lower than it

usually does in other games, we may zoom into the dynamics of the game in a way that is similar to

the white-box analysis to see whether a new mechanism takes advantage of flaws in the fixed one.

This is to some extent comparable to the work of Rosin [Rosin, 1997] where a population of test

cases was evolved along with a population of solutions to the problem of interest so that the arms

race between the two species helped to obtain better solutions as well as difficult test cases. The

grey-box method, though involving a single species, comes in handy in serving the very purpose

in that it automatically produces a variety of new mechanisms. In this scenario, the fitness of a

sampled mechanism as well as the quality scores of building blocks involved can be defined as

the inverse of the game score of the mechanism under examination. Thus it does not matter much

whether or not these new mechanisms are strong competitors in CAT games, as long as they can

apply competitive pressure to the fixed mechanisms in one scenario and can help to identify the

flaws in those fixed mechanisms.

Indeed, the fitness function for mechanisms in the grey-box search can be defined rather ar-

bitrarily in response to a different scenario other than competing in CAT games and the grey-box

search can be deployed as usual. With fewer parameters involved and explicit feedback to guide

search, the grey-box search might be more effective than other search methods including the GA,

especially in a problem domain where the computational cost of evaluating a solution is high. The

superior results of the grey-box experiments to those of the GA experiments, both consuming the

same number of evaluations, suggests exactly that.
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The work in this dissertation is concerned with auction mechanism design, one of the most

important issues in electronic commerce. The model of the DA mechanisms presented here is

one of the most comprehensive ones that we are aware of in computational economics research.

This model and the various auction policies that we introduced and implemented in JCAT have

been commonly used by CAT entrants. For example, a slightly revised version of the history-

based shout accepting policy, AH, is the centerpiece of the design of PersianCat, the champion

of CAT 2008. Furthermore, the way that we manipulated DA mechanisms may provide guidance to

addressing problems involving other kinds of auction mechanisms, e.g., the single-sided auctions

used by online marketplaces like eBay and the ad auctions used to monetize search services by

Google and Microsoft. And even beyond, agent-based economic paradigms are increasingly used

for solving control and optimization problems in computer science [Clearwater, 1996; Gerding

et al., 2010]. The methods and tools presented in this dissertation may be valuable in designing

artificial economies for, for example, resource allocation and load balancing [Wang et al., 2011].

In this case, the artificial economies are typically isolated and confined to the computer systems of

interest, and are thus easier to manipulate and design, avoiding much complexity that is inherent

in a real economy.
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