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Abstract. Many electronic markets are linked together into larger “net-
work markets” where the links reflect constraints on traders. These con-
straints mean that a choice to trade in one market limits the trader’s
choice of other markets to use. This kind of network market is important
because so many basic products, including gas, water, and electricity, are
traded in such markets, and yet it has been little studied until now. This
paper studies networks of double auction markets populated with auto-
mated traders, concentrating on the effects of different network topolo-
gies. We find that the topology has a significant effect on the equilibrium
behavior of the set of markets.

1 Introduction

An auction, according to [1], is a market mechanism in which messages from
traders include some price information — this information may be an offer to
buy at a given price, in the case of a bid, or an offer to sell at a given price, in
the case of an ask — and which gives priority to higher bids and lower asks. The
rules of an auction determine, on the basis of the offers that have been made,
the allocation of goods and money between traders. When well designed [2],
auctions achieve desired economic outcomes like high allocative efficiency whilst
being easy to implement. Auctions have been widely used in solving real-world
resource allocation problems [3], in structuring stock or futures exchanges [1],
and, despite the current recession, are the basis of a vast volume of trade in
electronic markets.

There are many different kinds of auction. One of the most widely used kinds
is the double auction (da), in which both buyers and sellers are allowed to
exchange offers simultaneously. Since double auctions allow dynamic pricing on
both the supply side and the demand side of the marketplace, their study is of
great importance, both to theoretical economists, and those seeking to implement
real-world market places. The continuous double auction (cda) is a da in which
traders make deals continuously throughout the auction. The cda is one of the
most common exchange institutions, and is in fact the primary institution for
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trading of equities, commodities and derivatives in markets such as the New
York Stock Exchange (nyse) and Chicago Mercantile Exchange (cme). Another
common kind of double auction market is the clearing-house (ch) in which the
market clears at a pre-specified time, allowing all traders to place offers before
any matches are found. The ch is used, for example, to set stock prices at the
beginning of trading on some exchange markets.

Our focus in this paper is on the behavior of multiple auctions for the same
good. This interest is motivated by the fact that such situations are common in
the real world. Company stock is frequently listed on several stock exchanges.
US companies may be listed on both the nyse, nasdaq and, in the case of
larger firms, non-US markets like the London Stock Exchange (lse). Indian
companies can be listed on both the National Stock Exchange (nse) and the
Bombay Stock Exchange (bse). The interactions between such exchanges can
be complex, like that when the newly created Singapore International Monetary
Exchange (simex) claimed much of the trade in index futures on Nikkei 225
from Japanese markets in the late 1980s [4], or when unfulfilled orders on the
cme overflowed onto the nyse during the global stock market crash of 1987 [5].
This kind of interaction between markets has not been widely studied, especially
when the markets are populated by automated traders.

One multiple market scenario that is particularly interesting is that of net-
work markets, markets in which individual markets are linked together into larger
markets, where the links between markets reflect constraints on traders in the
markets. Network markets are important because so many basic products, in-
cluding gas [6], water, and electricity, are traded in such markets — the products
proceed through a series of transactions at different locations from producer to
final consumer, and the need to convey the product through a complex trans-
portation network provides the constraints.

Our specific focus in this paper is to examine the differences between network
markets with different topologies. We describe some experiments using network
markets where the nodes in the network are double auction markets, traders can
move between the markets, and the connections between markets are limitations
on such moves. These experiments identify whether network topology has a
significant effect on the steady state behavior of a set of connected markets and
the speed with which the set of markets converges to that steady state. We
see this work as a first step towards understanding the relationship between
market topology and performance. Our long-term goal is to be able to use our
understanding of this relationship to engineer network markets with appropriate
properties.

2 Background

2.1 Double Auctions

Double auctions have been extensively studied using agent-based methods. Gode
and Sunder [7] were the first to use multi-agent simulations in this way, testing
the hypothesis, suggested by [8], that the form of the market has more bearing
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on obtaining efficient allocation than the intelligence of traders in that market.
[7] introduced a “zero-intelligence” trading strategy (denoted zi-c) — which
involves making offers at random under the constraint that they do not lead to
loss-making trades — and showed that agents using this strategy could generate
high efficiency. Indeed, such agents come close enough to the performance of
human traders that Gode and Sunder claimed that trader intelligence is not
necessary.

This position was attacked by Cliff [9], who showed that if supply and de-
mand are asymmetric, the average transaction prices of zi-c traders can vary
significantly from the theoretical equilibrium. Cliff then introduced the zero in-
telligence plus (zip) trader, which uses a simple machine learning technique to
decide what offers to make based on previous offers and the trades that have
taken place. zip traders outperform zi-c traders, achieving both higher effi-
ciency and approaching equilibrium more closely across a wider range of market
conditions, prompting Cliff to suggest that zip traders embodied the minimal
intelligence required. A range of other trading algorithms has been proposed
— including those that took part in the Santa Fe double auction tournament
[10], the reinforcement learning Roth-Erev approach (re) [11] and the Gjerstad-
Dickhaut approach (gd) [12] — and the performance of these algorithms has
been evaluated under various market conditions. Despite the high performance
of gd traders, research into automated trading mechanisms has continued.

This work on trading strategies is only one facet of the research on auctions.
Gode and Sunder’s results suggest that the structure of the auction mechanism
plays an important role in determining the outcome of an auction, and this is
further borne out by the work of [13] and [14], both of which show that the same
set of trading strategies can have markedly different behaviors in different auction
mechanisms. This leads us to anticipate that in a set of connected markets the
way that the markets are connected will also have an effect on the behavior of
the markets.

2.2 Methodology

The basis of our approach comes from Smith [15] via Gode and Sunder [7] and
then Cliff [9]. We follow these authors in having all traders, whether human
or machine, be chosen to be either buyers or sellers. No trader can both buy
and sell in the same experiment. On any given day, each seller is given some
number of indivisible goods that they are allowed to exchange for money, and
is given a value for each good — the trader’s limit price or private value. A
typical restriction, which we adopt, is that no seller may sell a good for less than
its private value. Buyers have a similar private value for a number of goods,
but rather than goods, they are given an allocation of money which they may
exchange for goods. No buyer is permitted to pay more than the private value
for any good.

These conditions are what Smith [15] calls “conditions of normal supply and
demand”, the conditions in which the flow of goods through the market is at
equilibrium and each day sellers bring to market the same goods that cost the
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same to produce, and buyers look to buy the same goods at the same price.
The aim of our experiments is to identify what this equilibrium would be, and
to allow us to find the equilibrium point — bearing in mind that there is a
certain amount of learning going on that will take time to converge — we repeat
the same trading conditions day after day, allowing our trading agents to recall
the outcomes of trade on the previous day and trading multiple goods to speed
convergence to equilibrium. Despite this, the slow convergence of the learning1

means that to get close to a steady state we run our experiments for 600 trading
days under identical conditions with each day allowing for multiple rounds of
trading.

Clearly, this is not a realistic model. There is no existing market in which
the same set of traders will continue to trade with the same limit prices for
more than a year of trading without some price shock altering prices or traders
entering and leaving the market. The model is not intended to be realistic in this
sense. The model is just intended to tell us about the steady state, and we know
from the literature that introducing price shocks [12] and permitting traders to
enter or leave the market [16] just slows convergence to the steady state.

Our justification for working with such a simplified model is that we see our
work as fitting within the “class-of-models” approach, due to Sutton [17,18].
According to Sutton, the aim of modeling economic systems is rarely to model
a real market, but is to model an abstraction from a real market that captures
the behavior of a whole class of markets — exactly those which are the instanti-
ations of the abstract model. In this work we are trying to see what the steady
state behavior is in all sets of competing markets, both those with price shocks
and those without, both those in which traders enter and leave, and those that
do not. To do that we look first at the most abstract market. We can take the
results of our shock-free and fixed-trader experiments and use them to predict
the results of removing these restrictions, and in the future we can investigate
whether these predictions are true. This approach, of course, ties in with Ru-
binstein’s suggestion [19] that economic modeling be used to help sharpen our
economic intuitions about complex phenomena as well as being used to predict
the behavior of real systems.2

3 Experimental Setup

3.1 Software

To experiment with multiple markets, we used jcat [20], the platform that
supports the tac Market Design Competition [21]. jcat provides the ability to

1 Which we can attribute to the movement of traders between markets since we know
that the trading strategies we use converge in a few days at most in single market
experiments.

2 [19] presents four purposes for economic modeling in general: to predict behavior; to
guide decision-making by economic agents or policy-makers; to sharpen the intuition
of economists when studying complex phenomena; and to establish linkages between
theoretical economic concepts and everyday thinking.



Network Effects in Double Auction Markets with Automated Traders 23

(a) (b) (c) (d)

Fig. 1. The different topologies we consider. Each node is a market, each arc a con-
nection between markets. (a) fully connected, (b) ring, (c) chain, (d) star.

run multiple double auction markets populated by traders that use a variety
of trading strategies. Auctions in jcat follow the usual pattern for work on
automated trading agents, running for a number of trading days, with each day
being broken up into a series of rounds. A round is an opportunity for agents
to make offers (shouts) to buy or sell, and we distinguish different days because
at the beginning of a day, agents have their inventories replenished. As a result,
every buyer can buy goods every day, and every seller can sell every day. Days
are not identical because agents are aware of what happened on the previous
day. Thus it is possible for traders to learn, over the course of several days, the
optimal way to trade. In addition, jcat allows traders to move between markets
at the end of a day, and over the course of many days they learn which market
they perform best in.

In jcat there are no restrictions on the movement of traders. To study network
effects, we extended jcat to restrict the movement of traders. In particular, our
extension allows us to specify which markets a given market is connected to. At
the end of every day that a trader spends in that market, the trader has a choice
of remaining in that market or moving to any of the markets to which there
are connections. The decision mechanism employed by the traders to make this
choice is discussed below.

In our experiments, market connections have four topologies (1) Fully con-
nected. Each market is connected to every other market. (2) Ring. Each market
is connected to exactly two other markets. This is what [22] calls a “local con-
nected network”. (3) Chain structure. All but two of the markets are connected
to two other markets as in the ring. The remaining pair form the ends of the
chain and are connected to exactly one market. (4) Star structure. One market is
connected to every other market. There are no other connections between mar-
kets. This is the network topology studied in [23]. These topologies are illustrated
in Fig. 1.

3.2 Traders

In jcat markets, traders have two tasks. One is to decide how to make offers.
The mechanism they use to do this is their trading strategy. The other task is
to choose the market to make offers in. The mechanism for doing this is their
market selection strategy. We studied markets in which all the traders used the
same trading strategy, and considered two such strategies, Gode and Sunder’s
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zero intelligence strategy zi-c [7]; and Cliff’s zero intelligence plus (zip) strategy
[9]. The reason for picking the first of these is that given by [24], that since zi-c
is not making bids with any intelligence, any effects we see have to be a result of
market structure, rather than a consequence of the trading strategy, and hence
will be robust across markets inhabited by different kinds of trader. The reason
for picking zip is that it is typical of the behavior of automated traders, rapidly
converging to equilibrium in a single market.

In this work we use the standard market selection strategy used by jcat.
Traders treat the choice of market as an n-armed bandit problem that they
solve using an ε-greedy exploration policy [25]. Using this approach, a trader
chooses what it estimates to be the best available market, in terms of its average
daily trading profit in that market on previous days, with probability 1− ε, for
some ε, and chooses one of the remaining available markets with equal proba-
bility otherwise. We choose ε to take a constant value of 0.1. Our previous work
suggests that market selection behavior is rather insensitive to the parameters
we choose here, and we choose ε to remain constant so that any convergence of
traders to markets is due to traders picking markets that work for them rather
than being forced by a reduction in their tendency to explore.

Each trader is permitted to buy or sell at most five units of goods per day,
and each trader has a private value for these goods. Private values are set,
just as in [9] to form perfect “staircase” supply and demand curves, with every
buyer having a unique private value from the set {$50, $54, $58 . . . , $246, $250}.
Sellers are allocated values in the same way. A given trader has the same private
value for all goods that it trades throughout the entire experiment. All of our
experiments used 100 traders, divided into 50 buyers and 50 sellers. Initially they
are equally distributed between the markets, and subsequently use their market
selection strategy to pick the market to operate in.

3.3 Markets

While jcat allows us to charge traders in a variety of ways, we used just two
kinds of charge in the work reported here:

– Registration fees, charges made by the market for entering the market. We
set this to a low constant value ($0.5) for every market following [26] which
suggests that such a fee is effective in motivating extra-marginal traders to
move between markets thus preventing their inertia from distorting results.

– Profit fees, charges made by the market on the bid/ask spread of any trans-
actions they execute. The name arose because the bid/ask spread is the
transaction surplus, and with the k = 0.5 rule that is usually used in jcat
for allocating the surplus, the amount charged by this fee is thus directly
related to the profit realized by both agents.

Unlike previous work that used jcat to investigate multiple market scenarios
[16], we used a simple, non-adaptive scheme for the profit fee, placing a 5% profit
charge on all markets. In all of our experiments we run five markets connected
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Fig. 2. How the markets change over time. (a) shows the total number of traders that
move at the end of a given trading day, (b) shows the average transaction price each
day for a set of five fully connected cda markets with zip traders. The x-axis gives the
trading day, the y-axis gives (a) the number of traders, (b) the transaction price.

as described above, and we used both cda and ch markets, both of which are
provided in jcat.

3.4 Hypotheses

The aim of this work was to investigate the effect on market performance of
different topological connections between markets. In the context of the double
auction markets that we consider, these connections might reflect a number of
different constraints. For example, they might reflect the physical layout of mar-
ket makers on a trading floor, or they might reflect affiliations between electronic
markets, or they might reflect the relationship between the time-zones in which
different markets operate.

In any case, we would expect that, as in [27], the topology of the relation-
ships to have an effect on market behavior. In a model where traders move
between markets, we would expect that placing different restrictions on move-
ment between markets would lead to differences in the ease with which traders
can explore the space of markets and then reach their preferred market, affect-
ing the time it takes the set of markets to reach their steady state. In addition,
we might expect that these different restrictions might lead to the steady state
favoring some markets over other. These considerations give us two hypotheses
that we will test:

1. The topology of the network market will affect the speed with which the set
of markets reaches its steady-state configuration; and

2. The topology of the network will have a significant effect on the steady state
configuration of the set of markets.

Note that in discussing these hypotheses, we find it helpful to distinguish the fact
that some of the topologies we consider — the star and chain — are asymmetric
in the sense that traders in some markets are more restricted in the markets that
they can move to as opposed to the symmetric ring and fully-connected markets
where, in terms of connections, all markets are equal.
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3.5 Experiments

To test these hypotheses, we ran experiments that tested all the different com-
binations discussed above. That is we ran experiments for ch and cda markets
using each of the four different topologies, both the trading strategies described
above and both the market selection strategies. Each of these experiments was
run for 600 trading days, with each day being split into 50 0.5-second-long
rounds. We repeated each experiment 50 times and the results that we give
are averages across those 50 runs.

In order to assess the effect of the different topologies on the convergence
of the markets, we looked at the number of traders that moved each day. The
market selection strategy picks a random market with probability ε, so there will
always be some movement of traders, but we would expect to see the number
of traders decreasing from an initial high to a steady state, and the speed with
which the steady state is reached is one way to measure how quickly the system
of traders and markets converges.

To identify any differences between the steady state configurations of different
market topologies we looked at two things — the number of traders in each
market, and the efficiency of each market. The number of traders in each market
gives us some idea of the preference that traders have for markets, and any time
that there is an uneven distribution it is an indication that from the traders’ point
of view differences in market topologies have an effect. Efficiency, of course, is
a standard measure of market behavior, and will indicate whether differences in
the market topologies have an effect on the performance of the set of markets
as a whole.

4 Results

4.1 Speed of Convergence

When we look at the movement of traders between markets it is clear from Fig. 2
(a) that the markets make an exponential approach to the steady state (these
results are for zip traders and fully connected markets, but the results for other
experiments are similar). This is despite the fact that the average transaction
price in each market is, like that shown in Fig. 2 (b), far from steady.3 Since, as
described above, the market selection strategies we are using will mean that we
always have some number of traders still moving at the end of each trading day,
we can’t determine equilibrium by looking for the point at which all traders stop
moving. Instead we need to find a way to estimate the speed of convergence.

To do this we borrowed from the usual measure of the convergence of a market
to equilibrium [15]. To compute this measure, Smith’s alpha as it is known, we

3 Because the transaction price is a function of the traders in a market (in particular
it depends on both their private values and when and how they choose to bid), it
changes as traders move between markets. Since the reward gained by traders is a
function of the transaction price the dynamics are more complex than those of a set
of n-armed bandit learners converging to static rewards.
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Table 1. The average number of traders moving each day for the different topologies

zi-c

cda

Full Conn. 141.25
Ring 107.48

Chain 93.47
Star 93.34

ch

Full Conn. 184.56
Ring 143.95

Chain 125.43
Star 127.68

zip

cda

Full Conn. 142.91
Ring 108.90

Chain 95.61
Star 98.44

ch

Full Conn. 155.75
Ring 120.73

Chain 109.11
Star 113.43

compute the average deviation between the price of each transaction and the
equilibrium price suggested by theory. Here, we look at the number of traders
moving each day and compute the average difference from the number we would
expect if the only cause of trader movement was the ε in the market selection
strategy (which would mean that, on average, 10% of the traders would move
each day). Markets that are faster to converge to the steady state will have
lower values of this difference. These results are shown in Table 1 and show that
there is a clear difference between the speeds with which the different topologies
converge. In particular, the asymmetric topologies converge much faster than
the symmetric topologies.

4.2 Trader Distribution

To examine the steady-state for differences due to connection topology, we looked
at the number of traders in each market. Figure 3 shows this for each day of the
experiment for both zi-c and zip traders in cda markets (the other experiments
give very similar results). The graphs in the figure show that the distribution
of traders in fully-connected (Fig. 3(a), Fig. 3(e)) and ring (Fig. 3(b), Fig. 3(f))
markets is pretty uniform.

Chain markets, however, do not have the same symmetry, and this shows up
in the distribution of traders. As Fig. 3(c) and Fig. 3(g) show, markets at the
end of the chain end up with fewer traders than the markets in the middle of the
chain. The effect of the loss of symmetry is even more marked in star markets,
Here, as shown in Figures 3(d) and 3(h) the hub market in the star collects many
more traders than the otherwise identical markets that are connected to it.

The graphs of Fig. 3 do not make it easy to decide what differences are
significant so we show the actual trader numbers after the 600th trading day
(that is at the end of the experiment) in Table 2. This includes the results of all
the experiments on star and chain markets, not just those from Fig. 3 (the ones
from the figure are in the first and third rows of the table). In the chain markets,
the markets at the ends of the chain are M0 and M4. T-tests reveal that the
numbers of traders in these markets are significantly different from the numbers
of traders in markets M1, M2 and M3 at the 95% level. This holds for both cda
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Fig. 3. The number of traders in multiple connected cda markets with different con-
nection topologies on each trading day. The traders in (a)–(d) use the zip strategy,
those in (e)–(h) use the zi-c strategy. The x axis gives the trading days, the y axis the
number of traders in each of the five markets. In the chain markets, the dark lines give
the numbers for the markets at the end of the chain, and for the star markets, the dark
line gives the numbers for the market at the center. All other markets are marked with
dashed lines.

Table 2. The number of traders in each market for star and chain configurations for
both market selection strategies. In the star configuration, M0 is the hub, the market
at the center. In the chain markets, markets M0 and M4 are the markets at the end
of the chain. All markets make the same charges. In the star configuration the number
of traders in M0 is significantly greater than that in all the other markets with 95%
confidence in all cases and in the chain markets the number of traders in M0 and M4
is significantly smaller than in all the other markets with 95% confidence in all cases.

Star Chain

cda
zi-c

mean 43.67 13.65 15.82 14.14 12.72 16.24 22.74 20.88 22.21 17.93
stdev 11.89 7.88 8.25 8.38 7.23 6.63 8.86 9.86 9.67 7.45

zip
mean 42.50 13.90 13.57 15.42 14.61 16.10 22.22 22.66 23.72 15.31
stdev 9.08 5.13 5.19 5.57 4.76 4.91 5.52 7.08 5.89 4.45

ch
zi-c

mean 44.71 13.16 13.83 14.40 13.89 16.45 23.66 20.33 22.28 17.28
stdev 5.70 2.68 3.01 3.03 3.90 4.82 6.67 5.78 6.03 4.67

zip
mean 47.41 12.14 12.92 13.60 13.93 15.50 23.02 22.10 24.76 14.63
stdev 8.44 3.32 3.07 4.40 4.58 4.80 6.32 7.01 6.31 4.66

and ch markets whether the traders are zi-c or zip. In the star markets, the
market at the hub of the star is M0. T-tests show that the number of traders in
this market is significantly different from that in all other markets at the 95%
level again for both cda and ch markets for zi-c and zip traders.



Network Effects in Double Auction Markets with Automated Traders 29

4.3 Allocative Efficiency

The final results to consider are those in Table 3 which measures the alloca-
tive efficiency of sets of markets of different topologies. In particular what they
measure is what we call “global efficiency”, the ratio of the sum of profit made
in all of the markets to the equilibrium profit that would be made in a market
containing all the traders.

Pairwise t-tests on the efficiency values in Table 3 reveal that that there are
differences between the efficiencies obtained with different configurations that
are significant at the 95% level. In all the experiments the symmetric markets
are significantly less efficient than the asymmetric markets. In all of the experi-
ments except the ch with zi-c traders, fully-connected markets are less efficient
than ring markets, ring markets are less efficient than chain markets, and chain
markets are less efficient than star markets — all of these differences being sig-
nificant at the 95% level. A possible explanation for this may be the fact that
the asymmetric markets tend to concentrate traders in particular markets but
results from our prior work [16] (on the effect of allowing traders to move in fully
connected markets) suggests that such effects are only a partial explanation.

Note that the efficiency results we report for zip traders are somewhat lower
than are reported for such traders in single markets (and are lower than the
results we have obtained for the same implementation of zip in a single market,
results which are similar to those seen in the literature). We believe that there
are a couple of reasons for this. First, we are computing efficiency as the surplus
obtained divided by the surplus that would be obtained were all the traders in one
market and that market traded at theoretical equilibrium. It is easy to see that
it is possible to match traders in such a way that individual markets are efficient,
but the combined surplus will fall below what would be possible if all traders
were in one market and that is what we believe is happening here. (zip achieves
higher efficiency when the efficiency is computed in a more conventional fashion.).
Second, traders are constantly moving between markets, which means that the
equilibrium point of all the markets is constantly changing (recall the transaction
prices of Fig. 2 (b)). We know from [9] that zip takes several trading days to
identify market equilibrium, and since this is changing every day, zip is always

Table 3. The global efficiencies of sets of market with different connection topologies
from left to right, chain, ring, star and fully connected networks. The table gives results
for markets using both zi-c and zip traders, and for both cda and ch markets.

Chain Ring Star F.C.

zi-c
cda

mean 95.49 95.42 95.75 95.38
stdev 0.30 0.25 0.22 0.16

ch
mean 96.61 96.51 96.81 96.56
stdev 0.25 0.19 0.15 0.13

Chain Ring Star F.C.

zip
cda

mean 95.50 95.33 95.68 95.05
stdev 0.24 0.19 0.22 0.17

ch
mean 96.86 96.77 96.96 96.54
stdev 0.24 0.17 0.19 0.15
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playing catch-up. Naturally this will mean it is less than completely efficient.
(When traders are constrained not to move, the efficiency of zip improves.)

4.4 Discussion

The aim of this work was to test the hypotheses that:

1. The topology of the network market will affect the speed with which the set
of markets reaches its steady-state configuration; and

2. The topology of the network will have a significant effect on the steady state
configuration of the set of markets.

The results in Table 1 suggest that the first of these hypotheses is correct — for
most of the experiments that we carried out, the time we estimate it takes the
set of markets to converge varies considerably from topology to topology.

To address the second hypothesis, we measured both the number of traders in
each market and the overall efficiency of the set of markets. When we looked at
the number of traders (Table 2), it was clear that many more traders congregated
in the central market of the star configuration and many fewer traders choose the
end markets of the chain configuration, and pairwise t-tests confirmed that the
differences are statistically significant. This suggests that the second hypothesis
is correct. This suggestion is supported by looking at the efficiency of different
sets of markets (Table 3) where we find that sets of markets with different
topologies have significantly different efficiencies.

5 Related Work

While network markets have not been studied in the same detail as single mar-
kets, there is a growing body of work to consider. [23], for example, describes a
study of a three-node star network with a uniform-price double auction at each
node. The same authors [28] report experiments using a 9-node gas network
that, in addition to buyers and sellers, also includes pipeline owners, and in [6]
study another small gas market. A further small network model, including just
two markets, is the basis of the study in [29] into the effects of cheating (that
is, either not paying for goods, or failing to deliver goods that have been paid
for) and [30] investigates how a 6-node railway network responds to two different
pricing mechanisms. While these markets are similar to those in our study, the
investigations all dealt with markets with human traders.

Agent-based methods were used by [31] to examine the effects of linked mar-
kets on financial crises, while [32,33] consider the behavior of supply chains.4

This work all studies smaller sets of markets than we have considered. The
agent-based studies in [34] and [22] are larger but consider a set of connection

4 The tac supply chain competition also studies supply chains, but comes at it from
the perspective of individual traders rather than from the perspective of overall
market performance.
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topologies that overlap with, but does not contain, the set we consider. Both
[34] and [22] deal with networks equivalent to our ring (their term is “local”) as
well as small-world networks, which we do not consider. Neither looks st chain or
star topologies, the most interesting of the topologies we looked at, and neither
study considers traders that move between markets.

The most closely related research we know of is [27], [35] and [36]. Judd
and Kearns [27] describe experiments with human traders that clearly show
that restrictions on who is allowed to trade with who — restrictions that are
somewhat different from those imposed in our work — have a significant effect
on market clearing performance. Wilhite [35], though mainly concentrating on
results from network versions of the Prisoner’s dilemma, describes agent-based
experiments in the same kind of scenario as studied in [27] with similar results.
Ladley and Bullock [36] looked at networked markets of zip traders and showed
that differences in topology affected an agent’s ability to make a profit. Like the
results reported here, all of this work helps us to understand different aspects of
the effect of network topology on market performance.

6 Conclusions

This paper has examined the effect of different connection topologies on network
markets in which the constituent markets are double auctions and the connec-
tions denote the allowed movements of traders between markets. This work is
the first systematic study of the effects of network topology on a set of double
auction markets.

Traders in our experiments used either zi-c or zip strategies, and markets
were either chs or cdas. We looked at the behavior of four different topologies
— fully connected, ring, chain and star — and considered the speed with which
markets converge to a steady state, the distribution of traders across markets
in the steady state, and the overall allocative efficiency in the steady state.
We found that for all of these aspects, the connection topology can have a
significant effect. In particular, the asymmetric topologies, chain and star, lead
to an unequal distribution of traders, and in most cases an overall increase in
efficiency of the markets.

Our main conclusion that topology affects steady state behavior is in line
with previous work on network markets [27,35]. In addition, since our results are
consistent across different trading strategies (including the minimally rational
zi-c) and different market selection strategies, we believe that they will prove
to be robust across other variants of our experimental scenario. With this in
mind, we are currently working to analyze the performance of network markets
with different topologies — in particular small-world, random and scale-free
topologies — and to handle larger sets of markets than we considered here.
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